These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


316 related items for PubMed ID: 20174889

  • 1. Production of cellulolytic enzymes by fungi Acrophialophora nainiana and Ceratocystis paradoxa using different carbon sources.
    Barros RR, Oliveira RA, Gottschalk LM, Bon EP.
    Appl Biochem Biotechnol; 2010 May; 161(1-8):448-54. PubMed ID: 20174889
    [Abstract] [Full Text] [Related]

  • 2. Screening and production study of microbial xylanase producers from Brazilian Cerrado.
    Alves-Prado HF, Pavezzi FC, Leite RS, de Oliveira VM, Sette LD, Dasilva R.
    Appl Biochem Biotechnol; 2010 May; 161(1-8):333-46. PubMed ID: 19898784
    [Abstract] [Full Text] [Related]

  • 3. Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation.
    Camassola M, Dillon AJ.
    J Appl Microbiol; 2007 Dec; 103(6):2196-204. PubMed ID: 18045402
    [Abstract] [Full Text] [Related]

  • 4. Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources.
    Sipos B, Benko Z, Dienes D, Réczey K, Viikari L, Siika-aho M.
    Appl Biochem Biotechnol; 2010 May; 161(1-8):347-64. PubMed ID: 19898963
    [Abstract] [Full Text] [Related]

  • 5. Trichoderma harzianum IOC-4038: A promising strain for the production of a cellulolytic complex with significant β-glucosidase activity from sugarcane bagasse cellulignin.
    de Castro AM, Pedro KC, da Cruz JC, Ferreira MC, Leite SG, Pereira N.
    Appl Biochem Biotechnol; 2010 Nov; 162(7):2111-22. PubMed ID: 20455032
    [Abstract] [Full Text] [Related]

  • 6. Cellulases and xylanases production by Penicillium echinulatum grown on sugar cane bagasse in solid-state fermentation.
    Camassola M, Dillon AJ.
    Appl Biochem Biotechnol; 2010 Nov; 162(7):1889-900. PubMed ID: 20397060
    [Abstract] [Full Text] [Related]

  • 7. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.
    Florencio C, Cunha FM, Badino AC, Farinas CS, Ximenes E, Ladisch MR.
    Enzyme Microb Technol; 2016 Aug; 90():53-60. PubMed ID: 27241292
    [Abstract] [Full Text] [Related]

  • 8. Production and partial characterization of cellulases and Xylanases from Trichoderma atroviride 676 using lignocellulosic residual biomass.
    Grigorevski-Lima AL, de Oliveira MM, do Nascimento RP, Bon EP, Coelho RR.
    Appl Biochem Biotechnol; 2013 Feb; 169(4):1373-85. PubMed ID: 23306885
    [Abstract] [Full Text] [Related]

  • 9. Evaluation of different lignocellulosic substrates for the production of cellulases and xylanases by the basidiomycete fungi Bjerkandera adusta and Pycnoporus sanguineus.
    Quiroz-Castañeda RE, Pérez-Mejía N, Martínez-Anaya C, Acosta-Urdapilleta L, Folch-Mallol J.
    Biodegradation; 2011 Jun; 22(3):565-72. PubMed ID: 20963471
    [Abstract] [Full Text] [Related]

  • 10. Thermotolerant and mesophylic fungi from sugarcane bagasse and their prospection for biomass-degrading enzyme production.
    Santos BS, Gomes AF, Franciscon EG, Oliveira JM, Baffi MA.
    Braz J Microbiol; 2015 Jun; 46(3):903-10. PubMed ID: 26413077
    [Abstract] [Full Text] [Related]

  • 11. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover.
    Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y.
    Bioresour Technol; 2008 Nov; 99(16):7623-9. PubMed ID: 18346891
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Improved xylanase production by Trichoderma reesei grown on L-arabinose and lactose or D-glucose mixtures.
    Xiong H, Turunen O, Pastinen O, Leisola M, von Weymarn N.
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):353-8. PubMed ID: 14740196
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production.
    Cheng CL, Chang JS.
    Bioresour Technol; 2011 Sep; 102(18):8628-34. PubMed ID: 21481585
    [Abstract] [Full Text] [Related]

  • 20. Isolation and identification of two new fungal strains for xylanase production.
    Bakri Y, Masson M, Thonart P.
    Appl Biochem Biotechnol; 2010 Nov; 162(6):1626-34. PubMed ID: 20383603
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.