These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


238 related items for PubMed ID: 20175542

  • 1. A rearrangement of the guanosine-binding site establishes an extended network of functional interactions in the Tetrahymena group I ribozyme active site.
    Forconi M, Sengupta RN, Piccirilli JA, Herschlag D.
    Biochemistry; 2010 Mar 30; 49(12):2753-62. PubMed ID: 20175542
    [Abstract] [Full Text] [Related]

  • 2. Tightening of active site interactions en route to the transition state revealed by single-atom substitution in the guanosine-binding site of the Tetrahymena group I ribozyme.
    Forconi M, Porecha RH, Piccirilli JA, Herschlag D.
    J Am Chem Soc; 2011 May 25; 133(20):7791-800. PubMed ID: 21539364
    [Abstract] [Full Text] [Related]

  • 3. Characterization of a local folding event of the Tetrahymena group I ribozyme: effects of oligonucleotide substrate length, pH, and temperature on the two substrate binding steps.
    Narlikar GJ, Bartley LE, Khosla M, Herschlag D.
    Biochemistry; 1999 Oct 26; 38(43):14192-204. PubMed ID: 10571993
    [Abstract] [Full Text] [Related]

  • 4. An active site rearrangement within the Tetrahymena group I ribozyme releases nonproductive interactions and allows formation of catalytic interactions.
    Sengupta RN, Van Schie SN, Giambaşu G, Dai Q, Yesselman JD, York D, Piccirilli JA, Herschlag D.
    RNA; 2016 Jan 26; 22(1):32-48. PubMed ID: 26567314
    [Abstract] [Full Text] [Related]

  • 5. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.
    Shan SO, Herschlag D.
    Biochemistry; 1999 Aug 24; 38(34):10958-75. PubMed ID: 10460151
    [Abstract] [Full Text] [Related]

  • 6. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site.
    Guo F, Gooding AR, Cech TR.
    Mol Cell; 2004 Nov 05; 16(3):351-62. PubMed ID: 15525509
    [Abstract] [Full Text] [Related]

  • 7. The 2'-hydroxyl group of the guanosine nucleophile donates a functionally important hydrogen bond in the tetrahymena ribozyme reaction.
    Hougland JL, Sengupta RN, Dai Q, Deb SK, Piccirilli JA.
    Biochemistry; 2008 Jul 22; 47(29):7684-94. PubMed ID: 18572927
    [Abstract] [Full Text] [Related]

  • 8. Contributions of 2'-hydroxyl groups of the RNA substrate to binding and catalysis by the Tetrahymena ribozyme. An energetic picture of an active site composed of RNA.
    Herschlag D, Eckstein F, Cech TR.
    Biochemistry; 1993 Aug 17; 32(32):8299-311. PubMed ID: 7688572
    [Abstract] [Full Text] [Related]

  • 9. Aminoacyl esterase activity of the Tetrahymena ribozyme.
    Piccirilli JA, McConnell TS, Zaug AJ, Noller HF, Cech TR.
    Science; 1992 Jun 05; 256(5062):1420-4. PubMed ID: 1604316
    [Abstract] [Full Text] [Related]

  • 10. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R, Herschlag D.
    Biochemistry; 1996 May 07; 35(18):5796-809. PubMed ID: 8639540
    [Abstract] [Full Text] [Related]

  • 11. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis.
    Engelhardt MA, Doherty EA, Knitt DS, Doudna JA, Herschlag D.
    Biochemistry; 2000 Mar 14; 39(10):2639-51. PubMed ID: 10704214
    [Abstract] [Full Text] [Related]

  • 12. Structure and function converge to identify a hydrogen bond in a group I ribozyme active site.
    Forconi M, Sengupta RN, Liu MC, Sartorelli AC, Piccirilli JA, Herschlag D.
    Angew Chem Int Ed Engl; 2009 Mar 14; 48(39):7171-5. PubMed ID: 19708048
    [No Abstract] [Full Text] [Related]

  • 13. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site.
    Herschlag D, Cech TR.
    Biochemistry; 1990 Nov 06; 29(44):10159-71. PubMed ID: 2271645
    [Abstract] [Full Text] [Related]

  • 14. Evidence that the guanosine substrate of the Tetrahymena ribozyme is bound in the anti conformation and that N7 contributes to binding.
    Lin CW, Hanna M, Szostak JW.
    Biochemistry; 1994 Mar 08; 33(9):2703-7. PubMed ID: 8117735
    [Abstract] [Full Text] [Related]

  • 15. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization.
    Strobel SA, Cech TR.
    Biochemistry; 1996 Jan 30; 35(4):1201-11. PubMed ID: 8573575
    [Abstract] [Full Text] [Related]

  • 16. Promiscuous catalysis by the tetrahymena group I ribozyme.
    Forconi M, Herschlag D.
    J Am Chem Soc; 2005 May 04; 127(17):6160-1. PubMed ID: 15853307
    [Abstract] [Full Text] [Related]

  • 17. Protonated 2'-aminoguanosine as a probe of the electrostatic environment of the active site of the Tetrahymena group I ribozyme.
    Shan SO, Narlikar GJ, Herschlag D.
    Biochemistry; 1999 Aug 24; 38(34):10976-88. PubMed ID: 10460152
    [Abstract] [Full Text] [Related]

  • 18. Structure-function analysis from the outside in: long-range tertiary contacts in RNA exhibit distinct catalytic roles.
    Benz-Moy TL, Herschlag D.
    Biochemistry; 2011 Oct 11; 50(40):8733-55. PubMed ID: 21815635
    [Abstract] [Full Text] [Related]

  • 19. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu).
    Zaug AJ, Dávila-Aponte JA, Cech TR.
    Biochemistry; 1994 Dec 13; 33(49):14935-47. PubMed ID: 7527660
    [Abstract] [Full Text] [Related]

  • 20. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme.
    Pyle AM, Murphy FL, Cech TR.
    Nature; 1992 Jul 09; 358(6382):123-8. PubMed ID: 1377367
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.