These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Specificity from steric restrictions in the guanosine binding pocket of a group I ribozyme. Russell R, Herschlag D. RNA; 1999 Feb; 5(2):158-66. PubMed ID: 10024168 [Abstract] [Full Text] [Related]
45. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme. Strauss-Soukup JK, Strobel SA. J Mol Biol; 2000 Sep 15; 302(2):339-58. PubMed ID: 10970738 [Abstract] [Full Text] [Related]
47. Analysis of the P7 region within the catalytic core of the Tetrahymena ribozyme by employing in vitro selection. Oe Y, Ikawa Y, Shiraishi H, Inoue T. Nucleic Acids Symp Ser; 2000 Sep 15; (44):197-8. PubMed ID: 12903336 [Abstract] [Full Text] [Related]
48. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 2. Kinetic description of the reaction of an RNA substrate that forms a mismatch at the active site. Herschlag D, Cech TR. Biochemistry; 1990 Nov 06; 29(44):10172-80. PubMed ID: 2271646 [Abstract] [Full Text] [Related]
50. Conserved thermochemistry of guanosine nucleophile binding for structurally distinct group I ribozymes. Kuo LY, Cech TR. Nucleic Acids Res; 1996 Oct 01; 24(19):3722-7. PubMed ID: 8871550 [Abstract] [Full Text] [Related]
51. Modulation of individual steps in group I intron catalysis by a peripheral metal ion. Forconi M, Piccirilli JA, Herschlag D. RNA; 2007 Oct 01; 13(10):1656-67. PubMed ID: 17720880 [Abstract] [Full Text] [Related]
53. A hammerhead ribozyme allows synthesis of a new form of the Tetrahymena ribozyme homogeneous in length with a 3' end blocked for transesterification. Grosshans CA, Cech TR. Nucleic Acids Res; 1991 Jul 25; 19(14):3875-80. PubMed ID: 1650453 [Abstract] [Full Text] [Related]
54. Fluorescence-detected stopped flow with a pyrene labeled substrate reveals that guanosine facilitates docking of the 5' cleavage site into a high free energy binding mode in the Tetrahymena ribozyme. Bevilacqua PC, Li Y, Turner DH. Biochemistry; 1994 Sep 20; 33(37):11340-8. PubMed ID: 7727385 [Abstract] [Full Text] [Related]
55. Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA. Pan J, Deras ML, Woodson SA. J Mol Biol; 2000 Feb 11; 296(1):133-44. PubMed ID: 10656822 [Abstract] [Full Text] [Related]
56. Joining the two domains of a group I ribozyme to form the catalytic core. Tanner MA, Cech TR. Science; 1997 Feb 07; 275(5301):847-9. PubMed ID: 9012355 [Abstract] [Full Text] [Related]
57. Comparison of pH dependencies of the Tetrahymena ribozyme reactions with RNA 2'-substituted and phosphorothioate substrates reveals a rate-limiting conformational step. Herschlag D, Khosla M. Biochemistry; 1994 May 03; 33(17):5291-7. PubMed ID: 8172903 [Abstract] [Full Text] [Related]
58. Relationship between the self-splicing activity and the solidity of the master domain of the Tetrahymena group I ribozyme. Oe Y, Ikawa Y, Shiraishi H, Inoue T. Biochem Biophys Res Commun; 2002 Mar 15; 291(5):1225-31. PubMed ID: 11883948 [Abstract] [Full Text] [Related]
59. Guanosine binding to the Tetrahymena ribozyme: thermodynamic coupling with oligonucleotide binding. McConnell TS, Cech TR, Herschlag D. Proc Natl Acad Sci U S A; 1993 Sep 15; 90(18):8362-6. PubMed ID: 8378306 [Abstract] [Full Text] [Related]
60. Leaving group stabilization by metal ion coordination and hydrogen bond donation is an evolutionarily conserved feature of group I introns. Kuo LY, Piccirilli JA. Biochim Biophys Acta; 2001 Dec 30; 1522(3):158-66. PubMed ID: 11779630 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]