These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
218 related items for PubMed ID: 20176471
1. A thionine-modified carbon paste amperometric biosensor for catechol and bisphenol A determination. Portaccio M, Di Tuoro D, Arduini F, Lepore M, Mita DG, Diano N, Mita L, Moscone D. Biosens Bioelectron; 2010 May 15; 25(9):2003-8. PubMed ID: 20176471 [Abstract] [Full Text] [Related]
2. Enzymatic determination of BPA by means of tyrosinase immobilized on different carbon carriers. Mita DG, Attanasio A, Arduini F, Diano N, Grano V, Bencivenga U, Rossi S, Amine A, Moscone D. Biosens Bioelectron; 2007 Aug 30; 23(1):60-5. PubMed ID: 17467970 [Abstract] [Full Text] [Related]
3. Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A. Yin H, Zhou Y, Xu J, Ai S, Cui L, Zhu L. Anal Chim Acta; 2010 Feb 05; 659(1-2):144-50. PubMed ID: 20103117 [Abstract] [Full Text] [Related]
4. Nanofibrous membrane based tyrosinase-biosensor for the detection of phenolic compounds. Arecchi A, Scampicchio M, Drusch S, Mannino S. Anal Chim Acta; 2010 Feb 05; 659(1-2):133-6. PubMed ID: 20103115 [Abstract] [Full Text] [Related]
5. Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine) film. Dempsey E, Diamond D, Collier A. Biosens Bioelectron; 2004 Sep 15; 20(2):367-77. PubMed ID: 15308243 [Abstract] [Full Text] [Related]
6. A novel palygorskite-modified carbon paste amperometric sensor for catechol determination. Kong Y, Chen X, Wang W, Chen Z. Anal Chim Acta; 2011 Mar 04; 688(2):203-7. PubMed ID: 21334487 [Abstract] [Full Text] [Related]
7. Amperometric hydrogen peroxide biosensor based on covalently immobilizing thionine as a mediator. Ma L, Yuan R, Chai Y, Chen S, Ling S. Bioprocess Biosyst Eng; 2009 Jun 04; 32(4):537-44. PubMed ID: 18989707 [Abstract] [Full Text] [Related]
8. Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor. Pérez López B, Merkoçi A. Analyst; 2009 Jan 04; 134(1):60-4. PubMed ID: 19082175 [Abstract] [Full Text] [Related]
9. The Sonogel-Carbon materials as basis for development of enzyme biosensors for phenols and polyphenols monitoring: a detailed comparative study of three immobilization matrixes. El Kaoutit M, Naranjo-Rodriguez I, Temsamani KR, Hidalgo-Hidalgo de Cisneros JL. Biosens Bioelectron; 2007 Jun 15; 22(12):2958-66. PubMed ID: 17215118 [Abstract] [Full Text] [Related]
10. Fabrication of a carbon fiber paper as the electrode and its application toward developing a sensitive unmediated amperometric biosensor. Yuan CJ, Wang CL, Wu TY, Hwang KC, Chao WC. Biosens Bioelectron; 2011 Feb 15; 26(6):2858-63. PubMed ID: 21163638 [Abstract] [Full Text] [Related]
11. Bienzymatic amperometric biosensor for choline based on mediator thionine in situ electropolymerized within a carbon paste electrode. Yang M, Yang Y, Yang Y, Shen G, Yu R. Anal Biochem; 2004 Nov 01; 334(1):127-34. PubMed ID: 15464961 [Abstract] [Full Text] [Related]
12. Development of a high analytical performance-tyrosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles. Carralero V, Mena ML, Gonzalez-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Biosens Bioelectron; 2006 Dec 15; 22(5):730-6. PubMed ID: 16569498 [Abstract] [Full Text] [Related]
13. Tyrosinase-based biosensor for determination of bisphenol A in a flow-batch system. Kochana J, Wapiennik K, Kozak J, Knihnicki P, Pollap A, Woźniakiewicz M, Nowak J, Kościelniak P. Talanta; 2015 Nov 01; 144():163-70. PubMed ID: 26452806 [Abstract] [Full Text] [Related]
14. Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes. Karim MN, Lee JE, Lee HJ. Biosens Bioelectron; 2014 Nov 15; 61():147-51. PubMed ID: 24874658 [Abstract] [Full Text] [Related]
15. Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals. Scognamiglio V, Pezzotti I, Pezzotti G, Cano J, Manfredonia I, Buonasera K, Arduini F, Moscone D, Palleschi G, Giardi MT. Anal Chim Acta; 2012 Nov 02; 751():161-70. PubMed ID: 23084066 [Abstract] [Full Text] [Related]
16. Nanographene-based tyrosinase biosensor for rapid detection of bisphenol A. Wu L, Deng D, Jin J, Lu X, Chen J. Biosens Bioelectron; 2012 May 15; 35(1):193-199. PubMed ID: 22445847 [Abstract] [Full Text] [Related]
17. Sensitive amperometric biosensor for phenolic compounds based on graphene-silk peptide/tyrosinase composite nanointerface. Qu Y, Ma M, Wang Z, Zhan G, Li B, Wang X, Fang H, Zhang H, Li C. Biosens Bioelectron; 2013 Jun 15; 44():85-8. PubMed ID: 23395727 [Abstract] [Full Text] [Related]
18. A biosensor fabricated by incorporation of a redox mediator into a carbon nanotube/nafion composite for tyrosinase immobilization: detection of matairesinol, an endocrine disruptor. Rather JA, Pilehvar S, De Wael K. Analyst; 2013 Jan 07; 138(1):204-10. PubMed ID: 23152952 [Abstract] [Full Text] [Related]
19. Sensitivity and selectivity determination of bisphenol A using SWCNT-CD conjugate modified glassy carbon electrode. Gao Y, Cao Y, Yang D, Luo X, Tang Y, Li H. J Hazard Mater; 2012 Jan 15; 199-200():111-8. PubMed ID: 22100222 [Abstract] [Full Text] [Related]
20. Extradiol dioxygenase-SiO₂ sol-gel modified electrode for catechol and its derivatives detection. Zhang Q, Qu Y, Zhang X, Zhou J, Wang H. Biosens Bioelectron; 2011 Jul 15; 26(11):4362-7. PubMed ID: 21592766 [Abstract] [Full Text] [Related] Page: [Next] [New Search]