These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


332 related items for PubMed ID: 20180115

  • 1. Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain.
    Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A.
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):109-15. PubMed ID: 20180115
    [Abstract] [Full Text] [Related]

  • 2. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase.
    Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A.
    Enzyme Microb Technol; 2012 May 10; 50(6-7):343-7. PubMed ID: 22500903
    [Abstract] [Full Text] [Related]

  • 3. Novel strategy for yeast construction using delta-integration and cell fusion to efficiently produce ethanol from raw starch.
    Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A.
    Appl Microbiol Biotechnol; 2010 Feb 10; 85(5):1491-8. PubMed ID: 19707752
    [Abstract] [Full Text] [Related]

  • 4. Raw starch fermentation to ethanol by an industrial distiller's yeast strain of Saccharomyces cerevisiae expressing glucoamylase and α-amylase genes.
    Kim HR, Im YK, Ko HM, Chin JE, Kim IC, Lee HB, Bai S.
    Biotechnol Lett; 2011 Aug 10; 33(8):1643-8. PubMed ID: 21479627
    [Abstract] [Full Text] [Related]

  • 5. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera.
    Eksteen JM, Van Rensburg P, Cordero Otero RR, Pretorius IS.
    Biotechnol Bioeng; 2003 Dec 20; 84(6):639-46. PubMed ID: 14595776
    [Abstract] [Full Text] [Related]

  • 6. Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, alpha-amylase and debranching enzyme.
    Kim JH, Kim HR, Lim MH, Ko HM, Chin JE, Lee HB, Kim IC, Bai S.
    Biotechnol Lett; 2010 May 20; 32(5):713-9. PubMed ID: 20131079
    [Abstract] [Full Text] [Related]

  • 7. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase.
    Kondo A, Shigechi H, Abe M, Uyama K, Matsumoto T, Takahashi S, Ueda M, Tanaka A, Kishimoto M, Fukuda H.
    Appl Microbiol Biotechnol; 2002 Mar 20; 58(3):291-6. PubMed ID: 11935178
    [Abstract] [Full Text] [Related]

  • 8. The Thr505 and Ser557 residues of the AGT1-encoded alpha-glucoside transporter are critical for maltotriose transport in Saccharomyces cerevisiae.
    Smit A, Moses SG, Pretorius IS, Cordero Otero RR.
    J Appl Microbiol; 2008 Apr 20; 104(4):1103-11. PubMed ID: 18179544
    [Abstract] [Full Text] [Related]

  • 9. Identification of regulatory elements in the AGT1 promoter of ale and lager strains of brewer's yeast.
    Vidgren V, Kankainen M, Londesborough J, Ruohonen L.
    Yeast; 2011 Aug 20; 28(8):579-94. PubMed ID: 21755532
    [Abstract] [Full Text] [Related]

  • 10. Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch.
    Khaw TS, Katakura Y, Koh J, Kondo A, Ueda M, Shioya S.
    Appl Microbiol Biotechnol; 2006 May 20; 70(5):573-9. PubMed ID: 16133340
    [Abstract] [Full Text] [Related]

  • 11. Kinetics of enhanced ethanol productivity using raw starch hydrolyzing glucoamylase from Aspergillus niger mutant produced in solid state fermentation.
    Rajoka MI, Yasmin A, Latif F.
    Lett Appl Microbiol; 2004 May 20; 39(1):13-8. PubMed ID: 15189282
    [Abstract] [Full Text] [Related]

  • 12. Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains.
    Inokuma K, Yoshida T, Ishii J, Hasunuma T, Kondo A.
    Appl Microbiol Biotechnol; 2015 Feb 20; 99(4):1655-63. PubMed ID: 25432675
    [Abstract] [Full Text] [Related]

  • 13. Improving the performance of a continuous process for the production of ethanol from starch.
    Trovati J, Giordano RC, Giordano RL.
    Appl Biochem Biotechnol; 2009 May 20; 156(1-3):76-90. PubMed ID: 19240991
    [Abstract] [Full Text] [Related]

  • 14. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase.
    Shigechi H, Koh J, Fujita Y, Matsumoto T, Bito Y, Ueda M, Satoh E, Fukuda H, Kondo A.
    Appl Environ Microbiol; 2004 Aug 20; 70(8):5037-40. PubMed ID: 15294847
    [Abstract] [Full Text] [Related]

  • 15. Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds.
    Farid MA, El-Enshasy HA, Noor El-Deen AM.
    J Basic Microbiol; 2002 Aug 20; 42(3):162-71. PubMed ID: 12111743
    [Abstract] [Full Text] [Related]

  • 16. Bioethanol production from uncooked raw starch by immobilized surface-engineered yeast cells.
    Chen JP, Wu KW, Fukuda H.
    Appl Biochem Biotechnol; 2008 Mar 20; 145(1-3):59-67. PubMed ID: 18425612
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.