These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
260 related items for PubMed ID: 2018522
41. Informed strain improvement for lignin degradation by Phanerochaete chrysosporium. Wyatt AM, Broda P. Microbiology (Reading); 1995 Nov; 141 ( Pt 11)():2811-22. PubMed ID: 8535509 [Abstract] [Full Text] [Related]
42. Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. Wariishi H, Valli K, Renganathan V, Gold MH. J Biol Chem; 1989 Aug 25; 264(24):14185-91. PubMed ID: 2760063 [Abstract] [Full Text] [Related]
43. Effect of culture conditions on manganese peroxidase production and activity by some white rot fungi. Gill K, Arora S. J Ind Microbiol Biotechnol; 2003 Jan 25; 30(1):28-33. PubMed ID: 12545383 [Abstract] [Full Text] [Related]
44. Haloperoxidase activity of Phanerochaete chrysosporium lignin peroxidases H2 and H8. Farhangrazi ZS, Sinclair R, Yamazaki I, Powers LS. Biochemistry; 1992 Nov 10; 31(44):10763-8. PubMed ID: 1420193 [Abstract] [Full Text] [Related]
46. The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Singh D, Chen S. Appl Microbiol Biotechnol; 2008 Dec 10; 81(3):399-417. PubMed ID: 18810426 [Abstract] [Full Text] [Related]
49. Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Bogan BW, Lamar RT. Appl Environ Microbiol; 1996 May 10; 62(5):1597-603. PubMed ID: 8633857 [Abstract] [Full Text] [Related]
50. New polymeric model substrates for the study of microbial ligninolysis. Kawai S, Jensen KA, Bao W, Hammel KE. Appl Environ Microbiol; 1995 Sep 10; 61(9):3407-14. PubMed ID: 7574649 [Abstract] [Full Text] [Related]
52. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Fernandez-Fueyo E, Ruiz-Dueñas FJ, Ferreira P, Floudas D, Hibbett DS, Canessa P, Larrondo LF, James TY, Seelenfreund D, Lobos S, Polanco R, Tello M, Honda Y, Watanabe T, Watanabe T, Ryu JS, Kubicek CP, Schmoll M, Gaskell J, Hammel KE, St John FJ, Vanden Wymelenberg A, Sabat G, Splinter BonDurant S, Syed K, Yadav JS, Doddapaneni H, Subramanian V, Lavín JL, Oguiza JA, Perez G, Pisabarro AG, Ramirez L, Santoyo F, Master E, Coutinho PM, Henrissat B, Lombard V, Magnuson JK, Kües U, Hori C, Igarashi K, Samejima M, Held BW, Barry KW, LaButti KM, Lapidus A, Lindquist EA, Lucas SM, Riley R, Salamov AA, Hoffmeister D, Schwenk D, Hadar Y, Yarden O, de Vries RP, Wiebenga A, Stenlid J, Eastwood D, Grigoriev IV, Berka RM, Blanchette RA, Kersten P, Martinez AT, Vicuna R, Cullen D. Proc Natl Acad Sci U S A; 2012 Apr 03; 109(14):5458-63. PubMed ID: 22434909 [Abstract] [Full Text] [Related]
53. A novel enzymatic decarboxylation of oxalic acid by the lignin peroxidase system of white-rot fungus Phanerochaete chrysosporium. Akamatsu Y, Ma DB, Higuchi T, Shimada M. FEBS Lett; 1990 Aug 20; 269(1):261-3. PubMed ID: 2387411 [Abstract] [Full Text] [Related]
54. Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylamino-dinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene. Michels J, Gottschalk G. Appl Environ Microbiol; 1994 Jan 20; 60(1):187-94. PubMed ID: 8117077 [Abstract] [Full Text] [Related]
55. Characterization of reactions catalyzed by manganese peroxidase from Phanerochaete chrysosporium. Aitken MD, Irvine RL. Arch Biochem Biophys; 1990 Feb 01; 276(2):405-14. PubMed ID: 2306104 [Abstract] [Full Text] [Related]