These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


237 related items for PubMed ID: 20189256

  • 1. Development of a biotic ligand model to predict the acute toxicity of cadmium to Daphnia pulex.
    Clifford M, McGeer JC.
    Aquat Toxicol; 2010 Jun 01; 98(1):1-7. PubMed ID: 20189256
    [Abstract] [Full Text] [Related]

  • 2. The effect of water chemistry on the acute toxicity of nickel to the cladoceran Daphnia pulex and the development of a biotic ligand model.
    Kozlova T, Wood CM, McGeer JC.
    Aquat Toxicol; 2009 Feb 19; 91(3):221-8. PubMed ID: 19111357
    [Abstract] [Full Text] [Related]

  • 3. Development of a biotic ligand model for the acute toxicity of zinc to Daphnia pulex in soft waters.
    Clifford M, McGeer JC.
    Aquat Toxicol; 2009 Jan 18; 91(1):26-32. PubMed ID: 19081149
    [Abstract] [Full Text] [Related]

  • 4. The acute toxicity of nickel to Daphnia magna: predictive capacity of bioavailability models in artificial and natural waters.
    Deleebeeck NM, De Schamphelaere KA, Heijerick DG, Bossuyt BT, Janssen CR.
    Ecotoxicol Environ Saf; 2008 May 18; 70(1):67-78. PubMed ID: 17624431
    [Abstract] [Full Text] [Related]

  • 5. Effects of water chemistry variables on gill binding and acute toxicity of cadmium in rainbow trout (Oncorhynchus mykiss): A biotic ligand model (BLM) approach.
    Niyogi S, Kent R, Wood CM.
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov 18; 148(4):305-14. PubMed ID: 18577468
    [Abstract] [Full Text] [Related]

  • 6. Modes of metal toxicity and impaired branchial ionoregulation in rainbow trout exposed to mixtures of Pb and Cd in soft water.
    Birceanu O, Chowdhury MJ, Gillis PL, McGeer JC, Wood CM, Wilkie MP.
    Aquat Toxicol; 2008 Sep 29; 89(4):222-31. PubMed ID: 18774611
    [Abstract] [Full Text] [Related]

  • 7. Acute dysprosium toxicity to Daphnia pulex and Hyalella azteca and development of the biotic ligand approach.
    Vukov O, Smith DS, McGeer JC.
    Aquat Toxicol; 2016 Jan 29; 170():142-151. PubMed ID: 26655658
    [Abstract] [Full Text] [Related]

  • 8. Evaluation of the Biotic Ligand Model relative to other site-specific criteria derivation methods for copper in surface waters with elevated hardness.
    Van Genderen E, Gensemer R, Smith C, Santore R, Ryan A.
    Aquat Toxicol; 2007 Aug 30; 84(2):279-91. PubMed ID: 17681387
    [Abstract] [Full Text] [Related]

  • 9. Acute toxicity of cadmium in Daphnia magna under different calcium and pH conditions: importance of influx rate.
    Tan QG, Wang WX.
    Environ Sci Technol; 2011 Mar 01; 45(5):1970-6. PubMed ID: 21314114
    [Abstract] [Full Text] [Related]

  • 10. Development of a chronic zinc biotic ligand model for Daphnia magna.
    Heijerick DG, De Schamphelaere KA, Van Sprang PA, Janssen CR.
    Ecotoxicol Environ Saf; 2005 Sep 01; 62(1):1-10. PubMed ID: 15978285
    [Abstract] [Full Text] [Related]

  • 11. Cross-phylum extrapolation of the Daphnia magna chronic biotic ligand model for zinc to the snail Lymnaea stagnalis and the rotifer Brachionus calyciflorus.
    De Schamphelaere KA, Janssen CR.
    Sci Total Environ; 2010 Oct 15; 408(22):5414-22. PubMed ID: 20727572
    [Abstract] [Full Text] [Related]

  • 12. Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas).
    Meyer JS, Boese CJ, Morris JM.
    Aquat Toxicol; 2007 Aug 30; 84(2):268-78. PubMed ID: 17659358
    [Abstract] [Full Text] [Related]

  • 13. A new model for predicting time course toxicity of heavy metals based on Biotic Ligand Model (BLM).
    Hatano A, Shoji R.
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 Jan 30; 151(1):25-32. PubMed ID: 19689929
    [Abstract] [Full Text] [Related]

  • 14. Cross-species extrapolation of chronic nickel Biotic Ligand Models.
    Schlekat CE, Van Genderen E, De Schamphelaere KA, Antunes PM, Rogevich EC, Stubblefield WA.
    Sci Total Environ; 2010 Nov 15; 408(24):6148-57. PubMed ID: 20920817
    [Abstract] [Full Text] [Related]

  • 15. Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture.
    Li B, Zhang X, Wang X, Ma Y.
    Ecotoxicol Environ Saf; 2009 Sep 15; 72(6):1760-6. PubMed ID: 19481262
    [Abstract] [Full Text] [Related]

  • 16. Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare).
    Lock K, Van Eeckhout H, De Schamphelaere KA, Criel P, Janssen CR.
    Chemosphere; 2007 Jan 15; 66(7):1346-52. PubMed ID: 16908050
    [Abstract] [Full Text] [Related]

  • 17. Effect of major cations and pH on the acute toxicity of cadmium to the earthworm Eisenia fetida: implications for the biotic ligand model approach.
    Li LZ, Zhou DM, Luo XS, Wang P, Wang QY.
    Arch Environ Contam Toxicol; 2008 Jul 15; 55(1):70-7. PubMed ID: 18175161
    [Abstract] [Full Text] [Related]

  • 18. Influence of dissolved organic matter on acute toxicity of zinc to larval fathead minnows (Pimephales promelas).
    Bringolf RB, Morris BA, Boese CJ, Santore RC, Allen HE, Meyer JS.
    Arch Environ Contam Toxicol; 2006 Oct 15; 51(3):438-44. PubMed ID: 16788742
    [Abstract] [Full Text] [Related]

  • 19. Cross-phylum comparison of a chronic biotic ligand model to predict chronic toxicity of copper to a freshwater rotifer, Brachionus calyciflorus (Pallas).
    De Schamphelaere KA, Heijerick DG, Janssen CR.
    Ecotoxicol Environ Saf; 2006 Feb 15; 63(2):189-95. PubMed ID: 16129487
    [Abstract] [Full Text] [Related]

  • 20. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model.
    Hatano A, Shoji R.
    Environ Toxicol; 2008 Jun 15; 23(3):372-8. PubMed ID: 18214895
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.