These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase. Jawanda N, Ahmed K, Tu SC. Biochemistry; 2008 Jan 08; 47(1):368-77. PubMed ID: 18067321 [Abstract] [Full Text] [Related]
6. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity. Kim SH, Hisano T, Iwasaki W, Ebihara A, Miki K. Proteins; 2008 Feb 15; 70(3):718-30. PubMed ID: 17729270 [Abstract] [Full Text] [Related]
9. Transformation of a Flavin-Free FMN Reductase to a Canonical Flavoprotein through Modification of the π-Helix. Musila JM, Ellis HR. Biochemistry; 2016 Nov 22; 55(46):6389-6394. PubMed ID: 27806563 [Abstract] [Full Text] [Related]
10. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3. Sevrioukova I, Shaffer C, Ballou DP, Peterson JA. Biochemistry; 1996 Jun 04; 35(22):7058-68. PubMed ID: 8679531 [Abstract] [Full Text] [Related]
11. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site. Cénas N, Lê KH, Terrier M, Lederer F. Biochemistry; 2007 Apr 17; 46(15):4661-70. PubMed ID: 17373777 [Abstract] [Full Text] [Related]
12. Two-Component Flavin-Dependent Riboflavin Monooxygenase Degrades Riboflavin in Devosia riboflavina. Kanazawa H, Shigemoto R, Kawasaki Y, Oinuma KI, Nakamura A, Masuo S, Takaya N. J Bacteriol; 2018 Jun 15; 200(12):. PubMed ID: 29610214 [Abstract] [Full Text] [Related]
13. Mechanism for sulfur acquisition by the alkanesulfonate monooxygenase system. Ellis HR. Bioorg Chem; 2011 Dec 15; 39(5-6):178-84. PubMed ID: 21880344 [Abstract] [Full Text] [Related]
14. Mechanism of flavin reduction in the alkanesulfonate monooxygenase system. Gao B, Ellis HR. Biochim Biophys Acta; 2007 Mar 15; 1774(3):359-67. PubMed ID: 17289450 [Abstract] [Full Text] [Related]
16. Quantitation of FAD-dependent cytochrome P450 reductase activity by photoreduction. Hodgson AV, Strobel HW. Anal Biochem; 1996 Dec 01; 243(1):154-7. PubMed ID: 8954538 [Abstract] [Full Text] [Related]
17. The reduced flavin-dependent monooxygenase SfnG converts dimethylsulfone to methanesulfinate. Wicht DK. Arch Biochem Biophys; 2016 Aug 15; 604():159-66. PubMed ID: 27392454 [Abstract] [Full Text] [Related]
18. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O, Scrutton NS, Munro AW. Biochemistry; 2003 Sep 16; 42(36):10809-21. PubMed ID: 12962506 [Abstract] [Full Text] [Related]
19. Deletional studies to investigate the functional role of a dynamic loop region of alkanesulfonate monooxygenase. Xiong J, Ellis HR. Biochim Biophys Acta; 2012 Jul 16; 1824(7):898-906. PubMed ID: 22564769 [Abstract] [Full Text] [Related]
20. Resonance Raman study on the oxidized and anionic semiquinone forms of flavocytochrome b2 and L-lactate monooxygenase. Influence of the structure and environment of the isoalloxazine ring on the flavin function. Tegoni M, Gervais M, Desbois A. Biochemistry; 1997 Jul 22; 36(29):8932-46. PubMed ID: 9220981 [Abstract] [Full Text] [Related] Page: [Next] [New Search]