These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


186 related items for PubMed ID: 20196555

  • 1. Virtual screening discovery of new acetylcholinesterase inhibitors issued from CERMN chemical library.
    Sopkova-de Oliveira Santos J, Lesnard A, Agondanou JH, Dupont N, Godard AM, Stiebing S, Rochais C, Fabis F, Dallemagne P, Bureau R, Rault S.
    J Chem Inf Model; 2010 Mar 22; 50(3):422-8. PubMed ID: 20196555
    [Abstract] [Full Text] [Related]

  • 2. Acetylcholinesterase complexed with bivalent ligands related to huperzine a: experimental evidence for species-dependent protein-ligand complementarity.
    Wong DM, Greenblatt HM, Dvir H, Carlier PR, Han YF, Pang YP, Silman I, Sussman JL.
    J Am Chem Soc; 2003 Jan 15; 125(2):363-73. PubMed ID: 12517147
    [Abstract] [Full Text] [Related]

  • 3. Discovery of acetylcholinesterase peripheral anionic site ligands through computational refinement of a directed library.
    Dickerson TJ, Beuscher AE, Rogers CJ, Hixon MS, Yamamoto N, Xu Y, Olson AJ, Janda KD.
    Biochemistry; 2005 Nov 15; 44(45):14845-53. PubMed ID: 16274232
    [Abstract] [Full Text] [Related]

  • 4. The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design.
    Greenblatt HM, Guillou C, Guénard D, Argaman A, Botti S, Badet B, Thal C, Silman I, Sussman JL.
    J Am Chem Soc; 2004 Dec 01; 126(47):15405-11. PubMed ID: 15563167
    [Abstract] [Full Text] [Related]

  • 5. Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors.
    Mizutani MY, Itai A.
    J Med Chem; 2004 Sep 23; 47(20):4818-28. PubMed ID: 15369385
    [Abstract] [Full Text] [Related]

  • 6. Inhibition of acetylcholinesterase, beta-amyloid aggregation, and NMDA receptors in Alzheimer's disease: a promising direction for the multi-target-directed ligands gold rush.
    Rosini M, Simoni E, Bartolini M, Cavalli A, Ceccarini L, Pascu N, McClymont DW, Tarozzi A, Bolognesi ML, Minarini A, Tumiatti V, Andrisano V, Mellor IR, Melchiorre C.
    J Med Chem; 2008 Aug 14; 51(15):4381-4. PubMed ID: 18605718
    [Abstract] [Full Text] [Related]

  • 7. In silico design and search for acetylcholinesterase inhibitors in Alzheimer's disease with a suitable pharmacokinetic profile and low toxicity.
    da Silva VB, de Andrade P, Kawano DF, Morais PA, de Almeida JR, Carvalho I, Taft CA, da Silva CH.
    Future Med Chem; 2011 Jun 14; 3(8):947-60. PubMed ID: 21707398
    [Abstract] [Full Text] [Related]

  • 8. Synthesis, biological evaluation, and molecular modeling of berberine derivatives as potent acetylcholinesterase inhibitors.
    Huang L, Shi A, He F, Li X.
    Bioorg Med Chem; 2010 Feb 14; 18(3):1244-51. PubMed ID: 20056426
    [Abstract] [Full Text] [Related]

  • 9. Synthesis and biological evaluation of 3,6-diaryl-7H-thiazolo[3,2-b] [1,2,4]triazin-7-one derivatives as acetylcholinesterase inhibitors.
    Jin Z, Yang L, Liu SJ, Wang J, Li S, Lin HQ, Wan DC, Hu C.
    Arch Pharm Res; 2010 Oct 14; 33(10):1641-9. PubMed ID: 21052939
    [Abstract] [Full Text] [Related]

  • 10. Benzophenone-based derivatives: a novel series of potent and selective dual inhibitors of acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation.
    Belluti F, Bartolini M, Bottegoni G, Bisi A, Cavalli A, Andrisano V, Rampa A.
    Eur J Med Chem; 2011 May 14; 46(5):1682-93. PubMed ID: 21397996
    [Abstract] [Full Text] [Related]

  • 11. Cholinesterase inhibitors: xanthostigmine derivatives blocking the acetylcholinesterase-induced beta-amyloid aggregation.
    Belluti F, Rampa A, Piazzi L, Bisi A, Gobbi S, Bartolini M, Andrisano V, Cavalli A, Recanatini M, Valenti P.
    J Med Chem; 2005 Jun 30; 48(13):4444-56. PubMed ID: 15974596
    [Abstract] [Full Text] [Related]

  • 12. Discovery of dual binding site acetylcholinesterase inhibitors identified by pharmacophore modeling and sequential virtual screening techniques.
    Gupta S, Fallarero A, Järvinen P, Karlsson D, Johnson MS, Vuorela PM, Mohan CG.
    Bioorg Med Chem Lett; 2011 Feb 15; 21(4):1105-12. PubMed ID: 21273074
    [Abstract] [Full Text] [Related]

  • 13. Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Abeta1-42 aggregation for Alzheimer's disease therapeutics.
    Kwon YE, Park JY, No KT, Shin JH, Lee SK, Eun JS, Yang JH, Shin TY, Kim DK, Chae BS, Leem JY, Kim KH.
    Bioorg Med Chem; 2007 Oct 15; 15(20):6596-607. PubMed ID: 17681794
    [Abstract] [Full Text] [Related]

  • 14. Tacrine-based dual binding site acetylcholinesterase inhibitors as potential disease-modifying anti-Alzheimer drug candidates.
    Camps P, Formosa X, Galdeano C, Gómez T, Muñoz-Torrero D, Ramírez L, Viayna E, Gómez E, Isambert N, Lavilla R, Badia A, Clos MV, Bartolini M, Mancini F, Andrisano V, Bidon-Chanal A, Huertas O, Dafni T, Luque FJ.
    Chem Biol Interact; 2010 Sep 06; 187(1-3):411-5. PubMed ID: 20167211
    [Abstract] [Full Text] [Related]

  • 15. New potential AChE inhibitor candidates.
    de Paula AA, Martins JB, dos Santos ML, Nascente Lde C, Romeiro LA, Areas TF, Vieira KS, Gambôa NF, Castro NG, Gargano R.
    Eur J Med Chem; 2009 Sep 06; 44(9):3754-9. PubMed ID: 19446931
    [Abstract] [Full Text] [Related]

  • 16. Multipotent drugs with cholinergic and neuroprotective properties for the treatment of Alzheimer and neuronal vascular diseases. I. Synthesis, biological assessment, and molecular modeling of simple and readily available 2-aminopyridine-, and 2-chloropyridine-3,5-dicarbonitriles.
    Samadi A, Marco-Contelles J, Soriano E, Alvarez-Pérez M, Chioua M, Romero A, González-Lafuente L, Gandía L, Roda JM, López MG, Villarroya M, García AG, Ríos Cde L.
    Bioorg Med Chem; 2010 Aug 15; 18(16):5861-72. PubMed ID: 20656495
    [Abstract] [Full Text] [Related]

  • 17. Construction of the pharmacophore model of acetylcholinesterase inhibitor.
    Zhu Y, Tong XY, Zhao Y, Chen H, Jiang FC.
    Yao Xue Xue Bao; 2008 Mar 15; 43(3):267-76. PubMed ID: 18630262
    [Abstract] [Full Text] [Related]

  • 18. Tacrine-melatonin hybrids as multifunctional agents for Alzheimer's disease, with cholinergic, antioxidant, and neuroprotective properties.
    Fernández-Bachiller MI, Pérez C, Campillo NE, Páez JA, González-Muñoz GC, Usán P, García-Palomero E, López MG, Villarroya M, García AG, Martínez A, Rodríguez-Franco MI.
    ChemMedChem; 2009 May 15; 4(5):828-41. PubMed ID: 19308922
    [Abstract] [Full Text] [Related]

  • 19. Molecular interactions of cholinesterases inhibitors using in silico methods: current status and future prospects.
    Khan MT.
    N Biotechnol; 2009 Jun 15; 25(5):331-46. PubMed ID: 19491049
    [Abstract] [Full Text] [Related]

  • 20. Differential effects of "peripheral" site ligands on Torpedo and chicken acetylcholinesterase.
    Eichler J, Anselment A, Sussman JL, Massoulié J, Silman I.
    Mol Pharmacol; 1994 Feb 15; 45(2):335-40. PubMed ID: 8114681
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.