These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
286 related items for PubMed ID: 20196683
21. Effective electrochemical method for investigation of hemoglobin unfolding based on the redox property of heme groups at glassy carbon electrodes. Li X, Zheng W, Zhang L, Yu P, Lin Y, Su L, Mao L. Anal Chem; 2009 Oct 15; 81(20):8557-63. PubMed ID: 19754140 [Abstract] [Full Text] [Related]
22. Impact of hemoglobin concentration and affinity for oxygen on tissue oxygenation: the case of hemoglobin-based oxygen carriers. Samaja M, Terraneo L. Artif Organs; 2012 Feb 15; 36(2):210-5. PubMed ID: 21848930 [Abstract] [Full Text] [Related]
23. Artificial oxygen carriers, hemoglobin vesicles and albumin-hemes, based on bioconjugate chemistry. Tsuchida E, Sou K, Nakagawa A, Sakai H, Komatsu T, Kobayashi K. Bioconjug Chem; 2009 Aug 19; 20(8):1419-40. PubMed ID: 19206516 [Abstract] [Full Text] [Related]
24. Red cell substitutes from hemoglobin--do we start all over again? Kluger R. Curr Opin Chem Biol; 2010 Aug 19; 14(4):538-43. PubMed ID: 20392662 [Abstract] [Full Text] [Related]
25. Arenicola marina extracellular hemoglobin: a new promising blood substitute. Rousselot M, Delpy E, Drieu La Rochelle C, Lagente V, Pirow R, Rees JF, Hagege A, Le Guen D, Hourdez S, Zal F. Biotechnol J; 2006 Mar 19; 1(3):333-45. PubMed ID: 16897713 [Abstract] [Full Text] [Related]
26. Significance of beta116 His (G18) at alpha1beta1 contact sites for alphabeta assembly and autoxidation of hemoglobin. Adachi K, Yang Y, Lakka V, Wehrli S, Reddy KS, Surrey S. Biochemistry; 2003 Sep 02; 42(34):10252-9. PubMed ID: 12939154 [Abstract] [Full Text] [Related]
27. Oxygen therapeutics: can we tame haemoglobin? Alayash AI. Nat Rev Drug Discov; 2004 Feb 02; 3(2):152-9. PubMed ID: 15043006 [Abstract] [Full Text] [Related]
28. Comprehensive Biochemical and Biophysical Characterization of Hemoglobin-Based Oxygen Carrier Therapeutics: All HBOCs Are Not Created Equally. Meng F, Kassa T, Jana S, Wood F, Zhang X, Jia Y, D'Agnillo F, Alayash AI. Bioconjug Chem; 2018 May 16; 29(5):1560-1575. PubMed ID: 29570272 [Abstract] [Full Text] [Related]
29. Molecular Design Properties of OxyVita Hemoglobin, a New Generation Therapeutic Oxygen Carrier: A Review. Harrington JP, Wollocko H. J Funct Biomater; 2011 Dec 16; 2(4):414-24. PubMed ID: 24956452 [Abstract] [Full Text] [Related]
30. Site-specific cross-linking of human and bovine hemoglobins differentially alters oxygen binding and redox side reactions producing rhombic heme and heme degradation. Nagababu E, Ramasamy S, Rifkind JM, Jia Y, Alayash AI. Biochemistry; 2002 Jun 11; 41(23):7407-15. PubMed ID: 12044174 [Abstract] [Full Text] [Related]
31. The ability of polyethylene glycol conjugated bovine hemoglobin (PEG-Hb) to adequately deliver oxygen in both exchange transfusion and top-loaded rat models. Conover CD, Linberg R, Shum KL, Shorr RG. Artif Cells Blood Substit Immobil Biotechnol; 1999 Mar 11; 27(2):93-107. PubMed ID: 10092932 [Abstract] [Full Text] [Related]
32. Measuring circulating blood volume using infused hemoglobin-based oxygen carrier (oxyglobin) as an indicator: verification in a canine hypovolemia model. Jahr JS, Lurie F, Bezdikian V, Driessen B, Gunther RA. Am J Ther; 2008 Mar 11; 15(2):98-101. PubMed ID: 18356627 [Abstract] [Full Text] [Related]
33. A natural compound (reuterin) produced by Lactobacillus reuteri for hemoglobin polymerization as a blood substitute. Chen YC, Chang WH, Chang Y, Huang CM, Sung HW. Biotechnol Bioeng; 2004 Jul 05; 87(1):34-42. PubMed ID: 15211486 [Abstract] [Full Text] [Related]
34. CO binding improves the structural, functional, physical and anti-oxidation properties of the PEGylated hemoglobin. Wang Q, Hu T, Sun L, Ji S, Zhao D, Liu J, Ma G, Su Z. Artif Cells Nanomed Biotechnol; 2015 Feb 05; 43(1):18-25. PubMed ID: 24641771 [Abstract] [Full Text] [Related]
35. [Preparation of bovine hemoglobin-loaded nanoparticles used as blood substitutes and establishment of reduction system]. Zhang X, Yuan Y, Shan X, Sheng Y, Zhao J, Liu C. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Dec 05; 25(6):1332-7. PubMed ID: 19166204 [Abstract] [Full Text] [Related]
38. A biophysical investigation of recombinant hemoglobins with aromatic B10 mutations in the distal heme pockets. Wiltrout ME, Giovannelli JL, Simplaceanu V, Lukin JA, Ho NT, Ho C. Biochemistry; 2005 May 17; 44(19):7207-17. PubMed ID: 15882059 [Abstract] [Full Text] [Related]
39. Novel water-mediated hydrogen bonds as the structural basis for the low oxygen affinity of the blood substitute candidate rHb(alpha 96Val-->Trp). Puius YA, Zou M, Ho NT, Ho C, Almo SC. Biochemistry; 1998 Jun 30; 37(26):9258-65. PubMed ID: 9649306 [Abstract] [Full Text] [Related]
40. Control of oxidative reactions of hemoglobin in the design of blood substitutes: role of the Vc, NAC, TEMPO and their reductant system. Su X, Guo S, Huang X, Wang X, Qi D, Yang C. Artif Cells Nanomed Biotechnol; 2014 Aug 30; 42(4):222-8. PubMed ID: 24053379 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]