These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
110 related items for PubMed ID: 201981
1. Quench-flow measurements of initial rates of Ca2+ accumulation by isolated cardiac sarcoplasmic reticulum. Will H, Blanck J, Smettan G, Wollenberger A. Recent Adv Stud Cardiac Struct Metab; ; 11():199-204. PubMed ID: 201981 [Abstract] [Full Text] [Related]
2. A quench-flow kinetic investigation of calcium ion accumulation by isolated cardiac sarcoplasmic reticulum. Dependence of initial velocity on free calcium ion concentration and influence of preincubation with a protein kinase, MgATP, and cyclic AMP. Will H, Blanck J, Smettan G, Wollenberger A. Biochim Biophys Acta; 1976 Nov 09; 449(2):295-303. PubMed ID: 186117 [Abstract] [Full Text] [Related]
3. Control of calcium transport in the myocardium by the cyclic AMP-Protein kinase system. Katz AM, Tada M, Kirchberger MA. Adv Cyclic Nucleotide Res; 1975 Nov 09; 5():453-72. PubMed ID: 165680 [Abstract] [Full Text] [Related]
4. Stimulation of Ca2+ uptake by cyclic AMP and protein kinase in sarcoplasmic reticulum-rich and sarcolemma-rich microsomal fractions from rabbit heart. Will H, Schirpke B, Wollenberger A. Acta Biol Med Ger; 1976 Nov 09; 35(5):529-41. PubMed ID: 185862 [Abstract] [Full Text] [Related]
5. [Effect of calmodulin and 3':5'-AMP-dependent protein kinases on calcium transport by sarcoplasmic reticulum of normal rabbit myocardium and in toxico-allergic myocarditis]. Karsanov NV, Khugashvili ZG. Biokhimiia; 1983 Aug 09; 48(8):1359-64. PubMed ID: 6313076 [Abstract] [Full Text] [Related]
6. [Cause of increase in the efficiency of Ca2+ transport by fragments of sarcoplasmic reticulum from fast skeletal muscles induced by protein kinase]. Avakian EA, Ritov VB, Kozlov IuP. Biokhimiia; 1980 Apr 09; 45(4):601-8. PubMed ID: 6246973 [Abstract] [Full Text] [Related]
7. Phosphoprotein phosphatase-catalyzed dephosphorylation of the 22,000-dalton phosphoprotein of cardiac sarcoplasmic reticulum. Kirchberger MA, Raffo A. Recent Adv Stud Cardiac Struct Metab; 1980 Apr 09; 11():285-91. PubMed ID: 201987 [Abstract] [Full Text] [Related]
8. Effect of protein kinase modulator on cAMP-dependent protein kinase-catalyzed phosphorylation of phospholamban and stimulation of calcium transport in cardiac sarcoplasmic reticulum. Ohmori F, Tada M, Kinoshita N, Matsuo H, Sakakibara H. Recent Adv Stud Cardiac Struct Metab; 1980 Apr 09; 11():279-84. PubMed ID: 201986 [Abstract] [Full Text] [Related]
9. The cardiac relaxing system. Its nature, calcium ion capacity, and influence of hydrogen and magnesium ions on initial velocity of calcium binding. Levitsky DO, Benevolensky DS, Levchenko TS, Kuzmin AV. Adv Myocardiol; 1982 Apr 09; 3():393-405. PubMed ID: 6302782 [Abstract] [Full Text] [Related]
10. [Ca2+-accumulating capacity of mitochondria, sarcolemma and sarcoplasmic reticulum of rat heart]. Kravtsov GM, Pokudin NI, Orlov SN. Biokhimiia; 1979 Nov 09; 44(11):2058-65. PubMed ID: 546448 [Abstract] [Full Text] [Related]
11. [ATPase activity of the heart microsomes, the regulation of calcium transport in the microsomes and the calmodulin content in experimental myocardial infarct]. Antipenko AE, Sviderskaia EV, Lyzlova AN. Biull Eksp Biol Med; 1985 Feb 09; 99(2):152-4. PubMed ID: 2982436 [Abstract] [Full Text] [Related]
12. Effects of adenosine 3':5'-monophosphate-dependent protein kinase on sarcoplasmic reticulum isolated from cardiac and slow and fast contracting skeletal muscles. Kirchberger MA, Tada M. J Biol Chem; 1976 Feb 10; 251(3):725-9. PubMed ID: 175060 [Abstract] [Full Text] [Related]
13. [cAMP, calmodulin-dependent stimulation and stability to proteolysis of Ca 2+ transport in the heart sarcoplasmic reticulum]. Antipenko AE, Sviderskaia EV, Dizhe GP, Krasnovskaia IE. Biokhimiia; 1989 Dec 10; 54(12):2023-9. PubMed ID: 2561265 [Abstract] [Full Text] [Related]
14. Interactions of 6-gingerol and ellagic acid with the cardiac sarcoplasmic reticulum Ca2+-ATPase. Antipenko AY, Spielman AI, Kirchberger MA. J Pharmacol Exp Ther; 1999 Jul 10; 290(1):227-34. PubMed ID: 10381780 [Abstract] [Full Text] [Related]
15. Phospholamban-modulated Ca2+ transport in cardiac and slow twitch skeletal muscle sarcoplasmic reticulum. Movsesian MA, Morris GL, Wang JH, Krall J. Second Messengers Phosphoproteins; 1999 Jul 10; 14(3):151-61. PubMed ID: 1345340 [Abstract] [Full Text] [Related]
16. Characterization of calmodulin-dependent and cyclic-AMP-dependent protein kinase stimulation of cardiac sarcoplasmic reticulum calcium transport. Katz S, Richter B, Eibschutz B. Adv Myocardiol; 1985 Jul 10; 6():233-47. PubMed ID: 3158044 [Abstract] [Full Text] [Related]
17. Sarcoplasmic reticulum membrane and heart development. Michalak M. Can J Cardiol; 1987 Jul 10; 3(5):251-60. PubMed ID: 2440534 [Abstract] [Full Text] [Related]
18. Characterization of calmodulin effects on calcium transport in cardiac microsomes enriched in sarcoplasmic reticulum. Lopaschuk G, Richter B, Katz S. Biochemistry; 1980 Nov 25; 19(24):5603-7. PubMed ID: 6257283 [Abstract] [Full Text] [Related]
19. Comparison of the kinetic effects of phospholamban phosphorylation and anti-phospholamban monoclonal antibody on the calcium pump in purified cardiac sarcoplasmic reticulum membranes. Antipenko AY, Spielman AI, Sassaroli M, Kirchberger MA. Biochemistry; 1997 Oct 21; 36(42):12903-10. PubMed ID: 9335549 [Abstract] [Full Text] [Related]
20. [Impaired calcium uptake by cardiac sarcoplasmic reticulum and its underlying mechanism during rat septic shock]. Ji Y, Dong LW, Wu LL, Tang CS, Su JY. Sheng Li Xue Bao; 1995 Aug 21; 47(4):336-42. PubMed ID: 7481874 [Abstract] [Full Text] [Related] Page: [Next] [New Search]