These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
684 related items for PubMed ID: 20200097
1. Acute kidney injury: a springboard for progression in chronic kidney disease. Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK. Am J Physiol Renal Physiol; 2010 May; 298(5):F1078-94. PubMed ID: 20200097 [Abstract] [Full Text] [Related]
2. Microvascular rarefaction and hypertension in the impaired recovery and progression of kidney disease following AKI in preexisting CKD states. Polichnowski AJ. Am J Physiol Renal Physiol; 2018 Dec 01; 315(6):F1513-F1518. PubMed ID: 30256130 [Abstract] [Full Text] [Related]
5. Capillary rarefaction is more closely associated with CKD progression after cisplatin, rhabdomyolysis, and ischemia-reperfusion-induced AKI than renal fibrosis. Menshikh A, Scarfe L, Delgado R, Finney C, Zhu Y, Yang H, de Caestecker MP. Am J Physiol Renal Physiol; 2019 Nov 01; 317(5):F1383-F1397. PubMed ID: 31509009 [Abstract] [Full Text] [Related]
10. Acute kidney injury leading to chronic kidney disease and long-term outcomes of acute kidney injury: the best opportunity to mitigate acute kidney injury? Chawla LS. Contrib Nephrol; 2011 May 01; 174():182-190. PubMed ID: 21921623 [Abstract] [Full Text] [Related]
11. Vitamin D deficiency contributes to vascular damage in sustained ischemic acute kidney injury. de Bragança AC, Volpini RA, Mehrotra P, Andrade L, Basile DP. Physiol Rep; 2016 Jul 01; 4(13):. PubMed ID: 27369932 [Abstract] [Full Text] [Related]
12. Role of renin-angiotensin system in acute kidney injury-chronic kidney disease transition. Chou YH, Chu TS, Lin SL. Nephrology (Carlton); 2018 Oct 01; 23 Suppl 4():121-125. PubMed ID: 30298669 [Abstract] [Full Text] [Related]
13. Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage. Basile DP, Donohoe DL, Roethe K, Mattson DL. Am J Physiol Renal Physiol; 2003 Feb 01; 284(2):F338-48. PubMed ID: 12388385 [Abstract] [Full Text] [Related]
14. Do tubular changes in the diabetic kidney affect the susceptibility to acute kidney injury? Vallon V. Nephron Clin Pract; 2014 Feb 01; 127(1-4):133-8. PubMed ID: 25343837 [Abstract] [Full Text] [Related]
15. Acute Kidney Injury: Tubular Markers and Risk for Chronic Kidney Disease and End-Stage Kidney Failure. Tan HL, Yap JQ, Qian Q. Blood Purif; 2016 Feb 01; 41(1-3):144-50. PubMed ID: 26764483 [Abstract] [Full Text] [Related]
16. Urinary angiotensinogen predicts progressive chronic kidney disease after an episode of experimental acute kidney injury. Cui S, Wu L, Feng X, Su H, Zhou Z, Luo W, Su C, Li Y, Shi M, Yang Z, Cao W. Clin Sci (Lond); 2018 Oct 15; 132(19):2121-2133. PubMed ID: 30224346 [Abstract] [Full Text] [Related]
17. Pathophysiology of unilateral ischemia-reperfusion injury: importance of renal counterbalance and implications for the AKI-CKD transition. Polichnowski AJ, Griffin KA, Licea-Vargas H, Lan R, Picken MM, Long J, Williamson GA, Rosenberger C, Mathia S, Venkatachalam MA, Bidani AK. Am J Physiol Renal Physiol; 2020 May 01; 318(5):F1086-F1099. PubMed ID: 32174143 [Abstract] [Full Text] [Related]
18. Wnt/β-Catenin in Acute Kidney Injury and Progression to Chronic Kidney Disease. Huffstater T, Merryman WD, Gewin LS. Semin Nephrol; 2020 Mar 01; 40(2):126-137. PubMed ID: 32303276 [Abstract] [Full Text] [Related]
19. Hypoxia as a key player in the AKI-to-CKD transition. Tanaka S, Tanaka T, Nangaku M. Am J Physiol Renal Physiol; 2014 Dec 01; 307(11):F1187-95. PubMed ID: 25350978 [Abstract] [Full Text] [Related]
20. Blockade of cysteine-rich protein 61 attenuates renal inflammation and fibrosis after ischemic kidney injury. Lai CF, Lin SL, Chiang WC, Chen YM, Wu VC, Young GH, Ko WJ, Kuo ML, Tsai TJ, Wu KD. Am J Physiol Renal Physiol; 2014 Sep 01; 307(5):F581-92. PubMed ID: 24920753 [Abstract] [Full Text] [Related] Page: [Next] [New Search]