These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


154 related items for PubMed ID: 20201594

  • 1. In situ surface plasmon resonance investigation of the assembly process of multiwalled carbon nanotubes on an alkanethiol self-assembled monolayer for efficient protein immobilization and detection.
    Hu W, Lu Z, Liu Y, Li CM.
    Langmuir; 2010 Jun 01; 26(11):8386-91. PubMed ID: 20201594
    [Abstract] [Full Text] [Related]

  • 2. Dendrimer-functionalized self-assembled monolayers as a surface plasmon resonance sensor surface.
    Mark SS, Sandhyarani N, Zhu C, Campagnolo C, Batt CA.
    Langmuir; 2004 Aug 03; 20(16):6808-17. PubMed ID: 15274589
    [Abstract] [Full Text] [Related]

  • 3. Immobilization of acetylcholinesterase based on the controllable adsorption of carbon nanotubes onto an alkanethiol monolayer for carbaryl sensing.
    Du D, Wang M, Cai J, Tao Y, Tu H, Zhang A.
    Analyst; 2008 Dec 03; 133(12):1790-5. PubMed ID: 19082085
    [Abstract] [Full Text] [Related]

  • 4. Three-dimensionally assembled gold nanostructures for plasmonic biosensors.
    Guo L, Chen G, Kim DH.
    Anal Chem; 2010 Jun 15; 82(12):5147-53. PubMed ID: 20469841
    [Abstract] [Full Text] [Related]

  • 5. Development of a "membrane cloaking" method for amperometric enzyme immunoassay and surface plasmon resonance analysis of proteins in serum samples.
    Phillips KS, Han JH, Cheng Q.
    Anal Chem; 2007 Feb 01; 79(3):899-907. PubMed ID: 17263314
    [Abstract] [Full Text] [Related]

  • 6. Effect of nanometer surface morphology on surface stress and adsorption kinetics of alkanethiol self-assembled monolayers.
    Desikan R, Lee I, Thundat T.
    Ultramicroscopy; 2006 Feb 01; 106(8-9):795-9. PubMed ID: 16678968
    [Abstract] [Full Text] [Related]

  • 7. Improving neuron-to-electrode surface attachment via alkanethiol self-assembly: an alternating current impedance study.
    Slaughter GE, Bieberich E, Wnek GE, Wynne KJ, Guiseppi-Elie A.
    Langmuir; 2004 Aug 17; 20(17):7189-200. PubMed ID: 15301505
    [Abstract] [Full Text] [Related]

  • 8. In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy.
    Moon J, Kang T, Oh S, Hong S, Yi J.
    J Colloid Interface Sci; 2006 Jun 15; 298(2):543-9. PubMed ID: 16458912
    [Abstract] [Full Text] [Related]

  • 9. Surface plasmon resonance biosensor for direct detection of antibodies against human growth hormone.
    Kausaite-Minkstimiene A, Ramanaviciene A, Ramanavicius A.
    Analyst; 2009 Oct 15; 134(10):2051-7. PubMed ID: 19768212
    [Abstract] [Full Text] [Related]

  • 10. DNA sensors based on mixed self-assembled DNA/alkanethiol films.
    Peeters S, Stakenborg T.
    Methods Mol Biol; 2010 Oct 15; 627():179-89. PubMed ID: 20217621
    [Abstract] [Full Text] [Related]

  • 11. Quantitative analysis of protein adsorption via atomic force microscopy and surface plasmon resonance.
    Servoli E, Maniglio D, Aguilar MR, Motta A, San Roman J, Belfiore LA, Migliaresi C.
    Macromol Biosci; 2008 Dec 08; 8(12):1126-34. PubMed ID: 18690649
    [Abstract] [Full Text] [Related]

  • 12. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD, Lipert RJ, Porter MD.
    J Phys Chem B; 2006 Sep 07; 110(35):17444-51. PubMed ID: 16942083
    [Abstract] [Full Text] [Related]

  • 13. Poly(pyrrole-co-pyrrole propylic acid) film and its application in label-free surface plasmon resonance immunosensors.
    Hu W, Li CM, Dong H.
    Anal Chim Acta; 2008 Dec 07; 630(1):67-74. PubMed ID: 19068327
    [Abstract] [Full Text] [Related]

  • 14. Hybrid surface platform for the simultaneous detection of proteins and DNAs using a surface plasmon resonance imaging sensor.
    Ladd J, Taylor AD, Piliarik M, Homola J, Jiang S.
    Anal Chem; 2008 Jun 01; 80(11):4231-6. PubMed ID: 18457413
    [Abstract] [Full Text] [Related]

  • 15. Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings.
    Kim K, Kim DJ, Moon S, Kim D, Byun KM.
    Nanotechnology; 2009 Aug 05; 20(31):315501. PubMed ID: 19597249
    [Abstract] [Full Text] [Related]

  • 16. Peptide self-assembled monolayers for label-free and unamplified surface plasmon resonance biosensing in crude cell lysate.
    Bolduc OR, Clouthier CM, Pelletier JN, Masson JF.
    Anal Chem; 2009 Aug 15; 81(16):6779-88. PubMed ID: 19606821
    [Abstract] [Full Text] [Related]

  • 17. A SPR and AFM study of the effect of surface heterogeneity on adsorption of proteins.
    Huang YW, Gupta VK.
    J Chem Phys; 2004 Aug 01; 121(5):2264-71. PubMed ID: 15260781
    [Abstract] [Full Text] [Related]

  • 18. Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody.
    Lee JW, Sim SJ, Cho SM, Lee J.
    Biosens Bioelectron; 2005 Jan 15; 20(7):1422-7. PubMed ID: 15590298
    [Abstract] [Full Text] [Related]

  • 19. Surface plasmon resonance immunosensor for human cardiac troponin T based on self-assembled monolayer.
    Dutra RF, Mendes RK, Lins da Silva V, Kubota LT.
    J Pharm Biomed Anal; 2007 Apr 11; 43(5):1744-50. PubMed ID: 17254730
    [Abstract] [Full Text] [Related]

  • 20. Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium.
    Oh BK, Kim YK, Park KW, Lee WH, Choi JW.
    Biosens Bioelectron; 2004 Jun 15; 19(11):1497-504. PubMed ID: 15093222
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.