These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 20202885

  • 1. Influence of the frequency of the external mechanical stimulus on bone healing: a computational study.
    González-Torres LA, Gómez-Benito MJ, Doblaré M, García-Aznar JM.
    Med Eng Phys; 2010 May; 32(4):363-71. PubMed ID: 20202885
    [Abstract] [Full Text] [Related]

  • 2. A 3D computational simulation of fracture callus formation: influence of the stiffness of the external fixator.
    Gómez-Benito MJ, García-Aznar JM, Kuiper JH, Doblaré M.
    J Biomech Eng; 2006 Jun; 128(3):290-9. PubMed ID: 16706578
    [Abstract] [Full Text] [Related]

  • 3. Effect of mechanical stability on fracture healing--an update.
    Jagodzinski M, Krettek C.
    Injury; 2007 Mar; 38 Suppl 1():S3-10. PubMed ID: 17383483
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Influence of high-frequency cyclical stimulation on the bone fracture-healing process: mathematical and experimental models.
    Gómez-Benito MJ, González-Torres LA, Reina-Romo E, Grasa J, Seral B, García-Aznar JM.
    Philos Trans A Math Phys Eng Sci; 2011 Nov 13; 369(1954):4278-94. PubMed ID: 21969676
    [Abstract] [Full Text] [Related]

  • 6. Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth.
    García-Aznar JM, Kuiper JH, Gómez-Benito MJ, Doblaré M, Richardson JB.
    J Biomech; 2007 Nov 13; 40(7):1467-76. PubMed ID: 16930609
    [Abstract] [Full Text] [Related]

  • 7. Controlled mechanical stimulation in the treatment of tibial fractures.
    Kenwright J, Goodship AE.
    Clin Orthop Relat Res; 1989 Apr 13; (241):36-47. PubMed ID: 2924478
    [Abstract] [Full Text] [Related]

  • 8. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing.
    Claes L, Eckert-Hübner K, Augat P.
    J Orthop Res; 2002 Sep 13; 20(5):1099-105. PubMed ID: 12382978
    [Abstract] [Full Text] [Related]

  • 9. The influence of cyclic compression and distraction on the healing of experimental tibial fractures.
    Hente R, Füchtmeier B, Schlegel U, Ernstberger A, Perren SM.
    J Orthop Res; 2004 Jul 13; 22(4):709-15. PubMed ID: 15183425
    [Abstract] [Full Text] [Related]

  • 10. Evaluation of residual stresses due to bone callus growth: a computational study.
    González-Torres LA, Gómez-Benito MJ, García-Aznar JM.
    J Biomech; 2011 Jun 03; 44(9):1782-7. PubMed ID: 21550610
    [Abstract] [Full Text] [Related]

  • 11. Pressure, oxygen tension and temperature in the periosteal callus during bone healing--an in vivo study in sheep.
    Epari DR, Lienau J, Schell H, Witt F, Duda GN.
    Bone; 2008 Oct 03; 43(4):734-9. PubMed ID: 18634913
    [Abstract] [Full Text] [Related]

  • 12. Bone-healing patterns affected by loading, fracture fragment stability, fracture type, and fracture site compression.
    Aro HT, Chao EY.
    Clin Orthop Relat Res; 1993 Aug 03; (293):8-17. PubMed ID: 8339513
    [Abstract] [Full Text] [Related]

  • 13. [Influence of physical factors on osseous consolidation].
    Hinsenkamp M.
    Bull Mem Acad R Med Belg; 1996 Aug 03; 151(12):517-26. PubMed ID: 9491630
    [Abstract] [Full Text] [Related]

  • 14. Tibial external fixation, weight bearing, and fracture movement.
    Kershaw CJ, Cunningham JL, Kenwright J.
    Clin Orthop Relat Res; 1993 Aug 03; (293):28-36. PubMed ID: 8339493
    [Abstract] [Full Text] [Related]

  • 15. The initial phase of fracture healing is specifically sensitive to mechanical conditions.
    Klein P, Schell H, Streitparth F, Heller M, Kassi JP, Kandziora F, Bragulla H, Haas NP, Duda GN.
    J Orthop Res; 2003 Jul 03; 21(4):662-9. PubMed ID: 12798066
    [Abstract] [Full Text] [Related]

  • 16. Strain rate and timing of stimulation in mechanical modulation of fracture healing.
    Goodship AE, Cunningham JL, Kenwright J.
    Clin Orthop Relat Res; 1998 Oct 03; (355 Suppl):S105-15. PubMed ID: 9917631
    [Abstract] [Full Text] [Related]

  • 17. Local tissue properties in bone healing: influence of size and stability of the osteotomy gap.
    Augat P, Margevicius K, Simon J, Wolf S, Suger G, Claes L.
    J Orthop Res; 1998 Jul 03; 16(4):475-81. PubMed ID: 9747790
    [Abstract] [Full Text] [Related]

  • 18. Predicting the external formation of a bone fracture callus: an optimisation approach.
    Comiskey DP, MacDonald BJ, McCartney WT, Synnott K, O'Byrne J.
    Comput Methods Biomech Biomed Engin; 2012 Jul 03; 15(7):779-85. PubMed ID: 21614706
    [Abstract] [Full Text] [Related]

  • 19. The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments.
    Vetter A, Liu Y, Witt F, Manjubala I, Sander O, Epari DR, Fratzl P, Duda GN, Weinkamer R.
    J Biomech; 2011 Feb 03; 44(3):517-23. PubMed ID: 20965507
    [Abstract] [Full Text] [Related]

  • 20. Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: Comparison with in vivo results.
    Isaksson H, van Donkelaar CC, Huiskes R, Ito K.
    J Orthop Res; 2006 May 03; 24(5):898-907. PubMed ID: 16583441
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.