These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


134 related items for PubMed ID: 20206599

  • 21. [The study of transformation of tobacco with the stress responsible gene BoRS1 from Brassica oleracea var. acephala].
    Tang DQ, Qian HM, Zhao LX, Tang KX, Huang DF.
    Sheng Wu Gong Cheng Xue Bao; 2005 May; 21(3):489-92. PubMed ID: 16108381
    [Abstract] [Full Text] [Related]

  • 22. Overexpression of NtHAL3 genes confers increased levels of proline biosynthesis and the enhancement of salt tolerance in cultured tobacco cells.
    Yonamine I, Yoshida K, Kido K, Nakagawa A, Nakayama H, Shinmyo A.
    J Exp Bot; 2004 Feb; 55(396):387-95. PubMed ID: 14739262
    [Abstract] [Full Text] [Related]

  • 23. GhHyPRP4, a cotton gene encoding putative hybrid proline-rich protein, is preferentially expressed in leaves and involved in plant response to cold stress.
    Huang G, Gong S, Xu W, Li P, Zhang D, Qin L, Li W, Li X.
    Acta Biochim Biophys Sin (Shanghai); 2011 Jul; 43(7):519-27. PubMed ID: 21642274
    [Abstract] [Full Text] [Related]

  • 24. Molecular characterization of ThIPK2, an inositol polyphosphate kinase gene homolog from Thellungiella halophila, and its heterologous expression to improve abiotic stress tolerance in Brassica napus.
    Zhu JQ, Zhang JT, Tang RJ, Lv QD, Wang QQ, Yang L, Zhang HX.
    Physiol Plant; 2009 Aug; 136(4):407-25. PubMed ID: 19470090
    [Abstract] [Full Text] [Related]

  • 25. Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance.
    Dalal M, Tayal D, Chinnusamy V, Bansal KC.
    J Biotechnol; 2009 Jan 15; 139(2):137-45. PubMed ID: 19014980
    [Abstract] [Full Text] [Related]

  • 26. Stress responsive zinc-finger protein gene of Populus euphratica in tobacco enhances salt tolerance.
    Wang JY, Xia XL, Wang JP, Yin WL.
    J Integr Plant Biol; 2008 Jan 15; 50(1):56-61. PubMed ID: 18666952
    [Abstract] [Full Text] [Related]

  • 27. Physiological Changes and Differential Gene Expression of Tea Plants (Camellia sinensis (L.) Kuntze var. niaowangensis Q.H. Chen) Under Cold Stress.
    Wang Y, Li Y, Wang J, Xiang Z, Xi P, Zhao D.
    DNA Cell Biol; 2021 Jul 15; 40(7):906-920. PubMed ID: 34129383
    [Abstract] [Full Text] [Related]

  • 28. A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco.
    Wang F, Hou X, Tang J, Wang Z, Wang S, Jiang F, Li Y.
    Mol Biol Rep; 2012 Apr 15; 39(4):4553-64. PubMed ID: 21938429
    [Abstract] [Full Text] [Related]

  • 29. Phosphate-induced-1 gene from Eucalyptus (EgPHI-1) enhances osmotic stress tolerance in transgenic tobacco.
    Sousa AO, Assis ET, Pirovani CP, Alvim FC, Costa MG.
    Genet Mol Res; 2014 Mar 12; 13(1):1579-88. PubMed ID: 24668632
    [Abstract] [Full Text] [Related]

  • 30. Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes.
    Zuo KJ, Qin J, Zhao JY, Ling H, Zhang LD, Cao YF, Tang KX.
    Gene; 2007 Apr 15; 391(1-2):80-90. PubMed ID: 17321073
    [Abstract] [Full Text] [Related]

  • 31. Heterologous expression of Arabidopsis NPR1 (AtNPR1) enhances oxidative stress tolerance in transgenic tobacco plants.
    Srinivasan T, Kumar KR, Meur G, Kirti PB.
    Biotechnol Lett; 2009 Sep 15; 31(9):1343-51. PubMed ID: 19466562
    [Abstract] [Full Text] [Related]

  • 32. Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic arabidopsis.
    Wang L, Cao H, Qian W, Yao L, Hao X, Li N, Yang Y, Wang X.
    Ann Bot; 2017 May 01; 119(7):1195-1209. PubMed ID: 28334275
    [Abstract] [Full Text] [Related]

  • 33. Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation.
    Zhou HL, Cao WH, Cao YR, Liu J, Hao YJ, Zhang JS, Chen SY.
    FEBS Lett; 2006 Feb 20; 580(5):1239-50. PubMed ID: 16442528
    [Abstract] [Full Text] [Related]

  • 34. RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants.
    Peng Y, Reyes JL, Wei H, Yang Y, Karlson D, Covarrubias AA, Krebs SL, Fessehaie A, Arora R.
    Physiol Plant; 2008 Dec 20; 134(4):583-97. PubMed ID: 19000195
    [Abstract] [Full Text] [Related]

  • 35. Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings.
    Kobayashi F, Maeta E, Terashima A, Takumi S.
    Physiol Plant; 2008 Sep 20; 134(1):74-86. PubMed ID: 18433415
    [Abstract] [Full Text] [Related]

  • 36. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245.
    Huang J, Sun SJ, Xu DQ, Yang X, Bao YM, Wang ZF, Tang HJ, Zhang H.
    Biochem Biophys Res Commun; 2009 Nov 20; 389(3):556-61. PubMed ID: 19751706
    [Abstract] [Full Text] [Related]

  • 37. Cloning of salt stress responsive cDNA from wheat and resistant analysis of differential fragment SR07 in transgenic tobacco.
    Liu Y, Zhang A, Jia J, Li A.
    J Genet Genomics; 2007 Sep 20; 34(9):842-9. PubMed ID: 17884694
    [Abstract] [Full Text] [Related]

  • 38. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5.
    Guo YH, Yu YP, Wang D, Wu CA, Yang GD, Huang JG, Zheng CC.
    New Phytol; 2009 Sep 20; 183(1):62-75. PubMed ID: 19402879
    [Abstract] [Full Text] [Related]

  • 39. Functional analysis of TaDi19A, a salt-responsive gene in wheat.
    Li S, Xu C, Yang Y, Xia G.
    Plant Cell Environ; 2010 Jan 20; 33(1):117-29. PubMed ID: 19895399
    [Abstract] [Full Text] [Related]

  • 40. CsSAD: a fatty acid desaturase gene involved in abiotic resistance in Camellia sinensis (L.).
    Ding ZT, Shen JZ, Pan LL, Wang YU, Li YS, Wang Y, Sun HW.
    Genet Mol Res; 2016 Mar 04; 15(1):15017512. PubMed ID: 26985937
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.