These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
199 related items for PubMed ID: 20210661
1. Identification of genes required for maximal tolerance to high-glucose concentrations, as those present in industrial alcoholic fermentation media, through a chemogenomics approach. Teixeira MC, Raposo LR, Palma M, Sá-Correia I. OMICS; 2010 Apr; 14(2):201-10. PubMed ID: 20210661 [Abstract] [Full Text] [Related]
2. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Teixeira MC, Raposo LR, Mira NP, Lourenço AB, Sá-Correia I. Appl Environ Microbiol; 2009 Sep; 75(18):5761-72. PubMed ID: 19633105 [Abstract] [Full Text] [Related]
3. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Mira NP, Palma M, Guerreiro JF, Sá-Correia I. Microb Cell Fact; 2010 Oct 25; 9():79. PubMed ID: 20973990 [Abstract] [Full Text] [Related]
4. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses. Charoenbhakdi S, Dokpikul T, Burphan T, Techo T, Auesukaree C. Appl Environ Microbiol; 2016 May 15; 82(10):3121-3130. PubMed ID: 26994074 [Abstract] [Full Text] [Related]
5. Insights into the mechanisms of toxicity and tolerance to the agricultural fungicide mancozeb in yeast, as suggested by a chemogenomic approach. Dias PJ, Teixeira MC, Telo JP, Sá-Correia I. OMICS; 2010 Apr 15; 14(2):211-27. PubMed ID: 20337531 [Abstract] [Full Text] [Related]
6. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. Shima J, Ando A, Takagi H. Yeast; 2008 Mar 15; 25(3):179-90. PubMed ID: 18224659 [Abstract] [Full Text] [Related]
7. Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae. Watanabe D, Hashimoto N, Mizuno M, Zhou Y, Akao T, Shimoi H. Biosci Biotechnol Biochem; 2013 Mar 15; 77(11):2255-62. PubMed ID: 24200791 [Abstract] [Full Text] [Related]
9. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W. Biotechnol Bioeng; 2011 Aug 01; 108(8):1776-87. PubMed ID: 21437883 [Abstract] [Full Text] [Related]
10. An integrative analysis of transcriptomic response of ethanol tolerant strains to ethanol in Saccharomyces cerevisiae. Kasavi C, Eraslan S, Oner ET, Kirdar B. Mol Biosyst; 2016 Feb 01; 12(2):464-76. PubMed ID: 26661334 [Abstract] [Full Text] [Related]
11. Improvement of glucose uptake rate and production of target chemicals by overexpressing hexose transporters and transcriptional activator Gcr1 in Saccharomyces cerevisiae. Kim D, Song JY, Hahn JS. Appl Environ Microbiol; 2015 Dec 01; 81(24):8392-401. PubMed ID: 26431967 [Abstract] [Full Text] [Related]
12. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, Harashima S. J Appl Genet; 2009 Dec 01; 50(3):301-10. PubMed ID: 19638689 [Abstract] [Full Text] [Related]
13. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation. Teixeira MC, Godinho CP, Cabrito TR, Mira NP, Sá-Correia I. Microb Cell Fact; 2012 Jul 27; 11():98. PubMed ID: 22839110 [Abstract] [Full Text] [Related]
14. Genome-wide identification of genes required for yeast growth under imatinib stress: vacuolar H+-ATPase function is an important target of this anticancer drug. dos Santos SC, Sá-Correia I. OMICS; 2009 Jun 27; 13(3):185-98. PubMed ID: 19260806 [Abstract] [Full Text] [Related]
15. Early expression of yeast genes affected by chemical stress. Lucau-Danila A, Lelandais G, Kozovska Z, Tanty V, Delaveau T, Devaux F, Jacq C. Mol Cell Biol; 2005 Mar 27; 25(5):1860-8. PubMed ID: 15713640 [Abstract] [Full Text] [Related]
16. Role of Gcn4 for adaptation to methylglyoxal in Saccharomyces cerevisiae: methylglyoxal attenuates protein synthesis through phosphorylation of eIF2alpha. Nomura W, Maeta K, Kita K, Izawa S, Inoue Y. Biochem Biophys Res Commun; 2008 Nov 28; 376(4):738-42. PubMed ID: 18812164 [Abstract] [Full Text] [Related]
17. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes. Versele M, Thevelein JM, Van Dijck P. Yeast; 2004 Jan 15; 21(1):75-86. PubMed ID: 14745784 [Abstract] [Full Text] [Related]
18. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Hou L. Appl Biochem Biotechnol; 2010 Feb 15; 160(4):1084-93. PubMed ID: 19214789 [Abstract] [Full Text] [Related]
19. Absence of Btn1p in the yeast model for juvenile Batten disease may cause arginine to become toxic to yeast cells. Vitiello SP, Wolfe DM, Pearce DA. Hum Mol Genet; 2007 May 01; 16(9):1007-16. PubMed ID: 17341489 [Abstract] [Full Text] [Related]
20. RNA-seq transcriptomic analysis of green tea polyphenols regulation of differently expressed genes in Saccharomyces cerevisiae under ethanol stress. Cheng L, Zhang X, Zheng X, Wu Z, Weng P. World J Microbiol Biotechnol; 2019 Mar 26; 35(4):59. PubMed ID: 30915597 [Abstract] [Full Text] [Related] Page: [Next] [New Search]