These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 20219517

  • 1. Adjusting a light dispersion model to fit measurements from vertebrate ocular media as well as ray-tracing in fish lenses.
    Gagnon YL, Kröger RH, Söderberg B.
    Vision Res; 2010 Apr 21; 50(9):850-3. PubMed ID: 20219517
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Changes in spherical aberration after lens refilling with a silicone oil.
    Wong KH, Koopmans SA, Terwee T, Kooijman AC.
    Invest Ophthalmol Vis Sci; 2007 Mar 21; 48(3):1261-7. PubMed ID: 17325171
    [Abstract] [Full Text] [Related]

  • 4. The evolution of lenses.
    Land MF.
    Ophthalmic Physiol Opt; 2012 Nov 21; 32(6):449-60. PubMed ID: 23057564
    [Abstract] [Full Text] [Related]

  • 5. Optical plasticity in fish lenses.
    Kröger RH.
    Prog Retin Eye Res; 2013 May 21; 34():78-88. PubMed ID: 23262260
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Refractive index distribution and spherical aberration in the crystalline lens of the African cichlid fish Haplochromis burtoni.
    Kröger RH, Campbell MC, Munger R, Fernald RD.
    Vision Res; 1994 Jul 21; 34(14):1815-22. PubMed ID: 7941384
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Compensation for longitudinal chromatic aberration in the eye of the firefly squid, Watasenia scintillans.
    Kröger RH, Gislén A.
    Vision Res; 2004 Jul 21; 44(18):2129-34. PubMed ID: 15183679
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. The refractive index and protein distribution in the blue eye trevally lens.
    Pierscionek BK, Augusteyn RC.
    J Am Optom Assoc; 1995 Dec 21; 66(12):739-43. PubMed ID: 8557951
    [Abstract] [Full Text] [Related]

  • 14. Refractive index distribution in the porcine eye lens for 532 nm and 633 nm light.
    Pierscionek BK, Belaidi A, Bruun HH.
    Eye (Lond); 2005 Apr 21; 19(4):375-81. PubMed ID: 15319785
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Potential ultraviolet vision in pre-settlement larvae and settled reef fish--a comparison across 23 families.
    Siebeck UE, Marshall NJ.
    Vision Res; 2007 Aug 21; 47(17):2337-52. PubMed ID: 17632200
    [Abstract] [Full Text] [Related]

  • 17. The role of the lens in refractive development of the eye: animal models of ametropia.
    Sivak JG.
    Exp Eye Res; 2008 Jul 21; 87(1):3-8. PubMed ID: 18405895
    [Abstract] [Full Text] [Related]

  • 18. Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI).
    Jones CE, Atchison DA, Meder R, Pope JM.
    Vision Res; 2005 Aug 21; 45(18):2352-66. PubMed ID: 15979462
    [Abstract] [Full Text] [Related]

  • 19. Longitudinal chromatic aberration of the vertebrate eye.
    Mandelman T, Sivak JG.
    Vision Res; 1983 Aug 21; 23(12):1555-9. PubMed ID: 6666057
    [Abstract] [Full Text] [Related]

  • 20. Possible role of fundus circulation as an intraocular colour filter in certain fishes.
    Sivak JG, Roth PI.
    Rev Can Biol; 1978 Jun 21; 37(2):85-90. PubMed ID: 704983
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.