These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


592 related items for PubMed ID: 20224002

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. The effect of oxygen on dynamic cerebral autoregulation: critical role of hypocapnia.
    Ogoh S, Nakahara H, Ainslie PN, Miyamoto T.
    J Appl Physiol (1985); 2010 Mar; 108(3):538-43. PubMed ID: 20056845
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Differential effects of acute hypoxia and high altitude on cerebral blood flow velocity and dynamic cerebral autoregulation: alterations with hyperoxia.
    Ainslie PN, Ogoh S, Burgess K, Celi L, McGrattan K, Peebles K, Murrell C, Subedi P, Burgess KR.
    J Appl Physiol (1985); 2008 Feb; 104(2):490-8. PubMed ID: 18048592
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Cerebral circulation during mild +Gz hypergravity by short-arm human centrifuge.
    Iwasaki K, Ogawa Y, Aoki K, Yanagida R.
    J Appl Physiol (1985); 2012 Jan; 112(2):266-71. PubMed ID: 22052869
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Dexmedetomidine weakens dynamic cerebral autoregulation as assessed by transfer function analysis and the thigh cuff method.
    Ogawa Y, Iwasaki K, Aoki K, Kojima W, Kato J, Ogawa S.
    Anesthesiology; 2008 Oct; 109(4):642-50. PubMed ID: 18813043
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Autonomic neural control of dynamic cerebral autoregulation in humans.
    Zhang R, Zuckerman JH, Iwasaki K, Wilson TE, Crandall CG, Levine BD.
    Circulation; 2002 Oct 01; 106(14):1814-20. PubMed ID: 12356635
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia.
    Dineen NE, Brodie FG, Robinson TG, Panerai RB.
    J Appl Physiol (1985); 2010 Mar 01; 108(3):604-13. PubMed ID: 20035062
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. AltitudeOmics: cerebral autoregulation during ascent, acclimatization, and re-exposure to high altitude and its relation with acute mountain sickness.
    Subudhi AW, Fan JL, Evero O, Bourdillon N, Kayser B, Julian CG, Lovering AT, Panerai RB, Roach RC.
    J Appl Physiol (1985); 2014 Apr 01; 116(7):724-9. PubMed ID: 24371013
    [Abstract] [Full Text] [Related]

  • 20. Nitric oxide-sensitive guanylyl cyclase signaling affects CO2-dependent but not pressure-dependent regulation of cerebral blood flow.
    Jahshan S, Dayan L, Jacob G.
    Am J Physiol Regul Integr Comp Physiol; 2017 Jun 01; 312(6):R948-R955. PubMed ID: 28356297
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 30.