These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 202305

  • 1. Mitochondrial respiratory chain of Tetrahymena pyriformis: the properties of submitochondrial particles and the soluble b and c type pigments.
    Kilpatrick L, Erecińska M.
    Biochim Biophys Acta; 1977 Dec 23; 462(3):515-30. PubMed ID: 202305
    [Abstract] [Full Text] [Related]

  • 2. Mitochondrial respiratory chain of Tetrahymena pyriformis. The thermodynamic and spectral properties.
    Kilpatrick L, Erecińska M.
    Biochim Biophys Acta; 1977 May 11; 460(2):346-63. PubMed ID: 403946
    [Abstract] [Full Text] [Related]

  • 3. Thermodynamic and EPR characterization of iron-sulfur centers in the NADH-ubiquinone segment of the mitochondrial respiratory chain in pigeon heart.
    Ohnishi T.
    Biochim Biophys Acta; 1975 Jun 17; 387(3):475-90. PubMed ID: 166670
    [Abstract] [Full Text] [Related]

  • 4. Intramitochondrial positions of cytochrome haem groups determined by dipolar interactions with paramagnetic cations.
    Case GD, Leigh JS.
    Biochem J; 1976 Dec 15; 160(3):769-83. PubMed ID: 189758
    [Abstract] [Full Text] [Related]

  • 5. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S, Lorusso M, Izzo G, Capuano F.
    Biochem J; 1981 Feb 15; 194(2):395-406. PubMed ID: 7305997
    [Abstract] [Full Text] [Related]

  • 6. A di-heme cytochrome c peroxidase from Nitrosomonas europaea catalytically active in both the oxidized and half-reduced states.
    Arciero DM, Hooper AB.
    J Biol Chem; 1994 Apr 22; 269(16):11878-86. PubMed ID: 8163487
    [Abstract] [Full Text] [Related]

  • 7. Purification and characterization of membrane-bound CO-reactive hemoprotein from Tetrahymena pyriformis mitochondria.
    Inokuchi A, Fukumori Y.
    FEMS Microbiol Lett; 1993 Aug 15; 112(1):55-60. PubMed ID: 8405950
    [Abstract] [Full Text] [Related]

  • 8. Thermodynamic and EPR characterization of mitochondrial succinate-cytochrome c reductase-phospholipid complexes.
    Leigh JS, Erecinska M.
    Biochim Biophys Acta; 1975 Apr 14; 387(1):95-106. PubMed ID: 236028
    [Abstract] [Full Text] [Related]

  • 9. Kinetic studies on cytochrome c oxidase by combined epr and reflectance spectroscopy after rapid freezing.
    Beinert H, Hansen RE, Hartzell CR.
    Biochim Biophys Acta; 1976 Feb 16; 423(2):339-55. PubMed ID: 2321
    [Abstract] [Full Text] [Related]

  • 10. Studies on the succinate dehydrogenating system. Isolation and properties of the mitochondrial succinate-ubiquinone reductase.
    Tushurashvili PR, Gavrikova EV, Ledenev AN, Vinogradov AD.
    Biochim Biophys Acta; 1985 Sep 19; 809(2):145-59. PubMed ID: 2994719
    [Abstract] [Full Text] [Related]

  • 11. Purification and preliminary characterization of three c-type cytochromes from Pseudomonas nautica strain 617.
    Saraiva LM, Besson S, Moura I, Fauque G.
    Biochem Biophys Res Commun; 1995 Jul 26; 212(3):1088-97. PubMed ID: 7626097
    [Abstract] [Full Text] [Related]

  • 12. The cytochromes of mitochondria from Tetrahymena pyriformis strain ST.
    Lloyd D, Chance B.
    Biochem J; 1972 Aug 26; 128(5):1171-82. PubMed ID: 4345353
    [Abstract] [Full Text] [Related]

  • 13. Potentiometric titration of cytochrome-bo type quinol oxidase of Escherichia coli: evidence for heme-heme and copper-heme interaction.
    Salerno JC, Bolgiano B, Ingledew WJ.
    FEBS Lett; 1989 Apr 10; 247(1):101-5. PubMed ID: 2540043
    [Abstract] [Full Text] [Related]

  • 14. EPR and optical spectroscopic properties of the electron carrier intermediate between the reaction center bacteriochlorophylls and the primary acceptor in Chromatium vinosum.
    Tiede DM, Prince RC, Dutton PL.
    Biochim Biophys Acta; 1976 Dec 06; 449(3):447-67. PubMed ID: 187221
    [Abstract] [Full Text] [Related]

  • 15. [Redox-dependent protonation of cytochrome oxidase hemes in submitochondrial particles of the bovine heart].
    Artsatbanov VIu, Grigor'ev VA, Konstantinov AA.
    Biokhimiia; 1983 Jan 06; 48(1):46-53. PubMed ID: 6299407
    [Abstract] [Full Text] [Related]

  • 16. Catalytic activity of cytochromes c and c1 in mitochondria and submitochondrial particles.
    Nicholls P.
    Biochim Biophys Acta; 1976 Apr 09; 430(1):30-45. PubMed ID: 177075
    [Abstract] [Full Text] [Related]

  • 17. Studies of the orientation of the mitochondrial redox carriers. III. Orientation of the gx and gy axes of the hemes of cytochrome oxidase with respect to the plane of the membrane in oriented membrane multilayers.
    Erecińska M, Wilson DF, Blasie JK.
    Biochim Biophys Acta; 1979 Feb 08; 545(2):352-64. PubMed ID: 216401
    [Abstract] [Full Text] [Related]

  • 18. A succinate- and DPNH-reducible o-type cytochrome in mitochondrial preparations from Tetrahymena pyriformis.
    Perlish JS, Eichel HJ.
    Biochem Biophys Res Commun; 1971 Aug 20; 44(4):973-80. PubMed ID: 4331044
    [No Abstract] [Full Text] [Related]

  • 19. Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: a novel multihemic cytochrome bc, a new complex III.
    Pereira MM, Carita JN, Teixeira M.
    Biochemistry; 1999 Jan 26; 38(4):1268-75. PubMed ID: 9930987
    [Abstract] [Full Text] [Related]

  • 20. The effect of formate on cytochrome aa3 and on electron transport in the intact respiratory chain.
    Nicholls P.
    Biochim Biophys Acta; 1976 Apr 09; 430(1):13-29. PubMed ID: 4141
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.