These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Substrate/inhibitor specificities of human deoxycytidine kinase (dCK) and thymidine kinases (TK1 and TK2). Kierdaszuk B, Krawiec K, Kazimierczuk Z, Jacobsson U, Johansson NG, Munch-Petersen B, Eriksson S, Shugar D. Adv Exp Med Biol; 1998; 431():623-7. PubMed ID: 9598140 [Abstract] [Full Text] [Related]
3. Substrate/inhibitor properties of human deoxycytidine kinase (dCK) and thymidine kinases (TK1 and TK2) towards the sugar moiety of nucleosides, including O'-alkyl analogues. Kierdaszuk B, Krawiec K, Kazimierczuk Z, Jacobsson U, Johansson NG, Munch-Petersen B, Eriksson S, Shugar D. Nucleosides Nucleotides; 1999 Aug; 18(8):1883-903. PubMed ID: 10478487 [Abstract] [Full Text] [Related]
5. Deoxynucleoside phosphorylating enzymes in monkey and human tissues show great similarities, while mouse deoxycytidine kinase has a different substrate specificity. Habteyesus A, Nordenskjöld A, Bohman C, Eriksson S. Biochem Pharmacol; 1991 Oct 09; 42(9):1829-36. PubMed ID: 1657002 [Abstract] [Full Text] [Related]
6. The expression and activity of thymidine kinase 1 and deoxycytidine kinase are modulated by hydrogen peroxide and nucleoside analogs. Sun R, Eriksson S, Wang L. Nucleosides Nucleotides Nucleic Acids; 2020 Oct 09; 39(10-12):1347-1358. PubMed ID: 32189555 [Abstract] [Full Text] [Related]
8. Increased ratio between deoxycytidine kinase and thymidine kinase 2 in CLL lymphocytes compared to normal lymphocytes. Nielsen SE, Munch-Petersen B, Mejer J. Leuk Res; 1995 Jul 09; 19(7):443-7. PubMed ID: 7637389 [Abstract] [Full Text] [Related]
9. Stereoisomeric selectivity of human deoxyribonucleoside kinases. Wang J, Choudhury D, Chattopadhyaya J, Eriksson S. Biochemistry; 1999 Dec 21; 38(51):16993-9. PubMed ID: 10606535 [Abstract] [Full Text] [Related]
10. Expression of human mitochondrial thymidine kinase in Escherichia coli: correlation between the enzymatic activity of pyrimidine nucleoside analogues and their inhibitory effect on bacterial growth. Wang J, Su C, Neuhard J, Eriksson S. Biochem Pharmacol; 2000 Jun 15; 59(12):1583-8. PubMed ID: 10799656 [Abstract] [Full Text] [Related]
15. An Escherichia coli system expressing human deoxyribonucleoside salvage enzymes for evaluation of potential antiproliferative nucleoside analogs. Wang J, Neuhard J, Eriksson S. Antimicrob Agents Chemother; 1998 Oct 15; 42(10):2620-5. PubMed ID: 9756765 [Abstract] [Full Text] [Related]
17. Substrate specificity of human deoxycytidine kinase toward antiviral 2',3'-dideoxynucleoside analogs. Kierdaszuk B, Bohman C, Ullman B, Eriksson S. Biochem Pharmacol; 1992 Jan 22; 43(2):197-206. PubMed ID: 1739408 [Abstract] [Full Text] [Related]
18. Unique metabolism of a novel antiviral L-nucleoside analog, 2'-fluoro-5-methyl-beta-L-arabinofuranosyluracil: a substrate for both thymidine kinase and deoxycytidine kinase. Liu SH, Grove KL, Cheng YC. Antimicrob Agents Chemother; 1998 Apr 22; 42(4):833-9. PubMed ID: 9559792 [Abstract] [Full Text] [Related]
19. Tissue specific distribution of pyrimidine deoxynucleoside salvage enzymes shed light on the mechanism of mitochondrial DNA depletion. Wang L, Eriksson S. Nucleosides Nucleotides Nucleic Acids; 2010 Jun 22; 29(4-6):400-3. PubMed ID: 20544526 [Abstract] [Full Text] [Related]