These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


244 related items for PubMed ID: 202677

  • 1. Induced acetylcholine release from active purely cholinergic Torpedo synaptosomes.
    Michaelson DM, Sokolovsky M.
    J Neurochem; 1978 Jan; 30(1):217-30. PubMed ID: 202677
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. The storage and release of acetylcholine by cholinergic nerve terminals: recent results with non-mammalian preparations.
    Whittaker VP, Dowdall MJ, Boyne AF.
    Biochem Soc Symp; 1972 Jan; (36):49-68. PubMed ID: 4374951
    [No Abstract] [Full Text] [Related]

  • 9. Effect of electrical stimulation on the yield and composition of synaptic vesicles from the cholinergic synapses of the electric organ of Torpedo: a combined biochemical, electrophysiological and morphological study.
    Zimmermann H, Whittaker VP.
    J Neurochem; 1974 Mar; 22(3):435-50. PubMed ID: 4829966
    [No Abstract] [Full Text] [Related]

  • 10. Isolation of pure cholinergic nerve endings from Torpedo electric organ. Evaluation of their metabolic properties.
    Morel N, Israel M, Manaranche R, Mastour-Frachon P.
    J Cell Biol; 1977 Oct; 75(1):43-55. PubMed ID: 914896
    [Abstract] [Full Text] [Related]

  • 11. Calcium-dependent and -independent acetylcholine release from electric organ synaptosomes by pardaxin: evidence of a biphasic action of an excitatory neurotoxin.
    Arribas M, Blasi J, Lazarovici P, Marsal J.
    J Neurochem; 1993 Feb; 60(2):552-8. PubMed ID: 8419536
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Structural changes at pure cholinergic synaptosomes during the transmitter release induced by A-23187 in Torpedo marmorata. A freeze-fracture study.
    Egea G, Esquerda JE, Calvet R, Solsona C, Marsal J.
    Cell Tissue Res; 1987 Apr; 248(1):207-14. PubMed ID: 3105889
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Nitric oxide and peroxynitrite affect differently acetylcholine release, choline acetyltransferase activity, synthesis, and compartmentation of newly formed acetylcholine in Torpedo marmorata synaptosomes.
    Morot Gaudry-Talarmain Y, Moulian N, Meunier FA, Blanchard B, Angaut-Petit D, Faille L, Ducrocq C.
    Nitric Oxide; 1997 Aug; 1(4):330-45. PubMed ID: 9441905
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Effect of choline on the rates of synthesis and of release of acetylcholine in the electric organ of Torpedo.
    Morel N.
    J Neurochem; 1976 Sep; 27(3):779-84. PubMed ID: 966015
    [No Abstract] [Full Text] [Related]

  • 19. On the mechanism of acetylcholine release.
    Israël M, Dunant Y.
    Prog Brain Res; 1979 Sep; 49():125-39. PubMed ID: 229512
    [No Abstract] [Full Text] [Related]

  • 20. Ca2+-dependent protein phosphorylation of purely cholinergic Torpedo synaptosomes.
    Michaelson DM, Avissar S.
    J Biol Chem; 1979 Dec 25; 254(24):12542-6. PubMed ID: 387788
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.