These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
318 related items for PubMed ID: 2026886
1. Stimulation of murine natural killer (NK) cells by a monoclonal antibody specific for the NK1.1 antigen. IL-2-activated NK cells possess additional specific stimulation pathways. Karlhofer FM, Yokoyama WM. J Immunol; 1991 May 15; 146(10):3662-73. PubMed ID: 2026886 [Abstract] [Full Text] [Related]
2. The NK1.1 antigen in NK-mediated F1 antiparent killing in vitro. Kung SK, Miller RG. J Immunol; 1995 Feb 15; 154(4):1624-33. PubMed ID: 7836747 [Abstract] [Full Text] [Related]
3. Triggering of the cytotoxic activity of murine natural killer and lymphokine-activated killer cells through the NK2.1 antigen. Morelli L, Lemieux S. J Immunol; 1993 Dec 15; 151(12):6783-93. PubMed ID: 8258690 [Abstract] [Full Text] [Related]
4. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Karlhofer FM, Ribaudo RK, Yokoyama WM. Nature; 1992 Jul 02; 358(6381):66-70. PubMed ID: 1614533 [Abstract] [Full Text] [Related]
5. Regulation of cytolytic activity in CD3- and CD3+ killer cell clones by monoclonal antibodies (anti-CD16, anti-CD2, anti-CD3) depends on subclass specificity of target cell IgG-FcR. van de Griend RJ, Bolhuis RL, Stoter G, Roozemond RC. J Immunol; 1987 May 15; 138(10):3137-44. PubMed ID: 2952709 [Abstract] [Full Text] [Related]
6. Host MHC class I molecules modulate in vivo expression of a NK cell receptor. Karlhofer FM, Hunziker R, Reichlin A, Margulies DH, Yokoyama WM. J Immunol; 1994 Sep 15; 153(6):2407-16. PubMed ID: 8077656 [Abstract] [Full Text] [Related]
7. Natural killer cell depletion fails to influence initial CD4 T cell commitment in vivo in exogenous antigen-stimulated cytokine and antibody responses. Wang M, Ellison CA, Gartner JG, HayGlass KT. J Immunol; 1998 Feb 01; 160(3):1098-105. PubMed ID: 9570522 [Abstract] [Full Text] [Related]
8. Induction and blocking of cytolysis in CD2+, CD3- NK and CD2+, CD3+ cytotoxic T lymphocytes via CD2 50 KD sheep erythrocyte receptor. Bolhuis RL, Roozemond RC, van de Griend RJ. J Immunol; 1986 Jun 01; 136(11):3939-44. PubMed ID: 3084649 [Abstract] [Full Text] [Related]
9. Identification of a human natural killer cell target cell antigen with monoclonal antibodies. Harris DT, Jaso-Friedmann L, Devlin RB, Koren HS, Evans DL. J Immunol; 1989 Jul 15; 143(2):727-35. PubMed ID: 2738407 [Abstract] [Full Text] [Related]
10. A novel functional cell surface dimer (Kp43) expressed by natural killer cells and gamma/delta TCR+ T lymphocytes. II. Modulation of natural killer cytotoxicity by anti-Kp43 monoclonal antibody. Aramburu J, Balboa MA, Izquierdo M, López-Botet M. J Immunol; 1991 Jul 15; 147(2):714-21. PubMed ID: 1830071 [Abstract] [Full Text] [Related]
11. Tyrosine kinase-dependent activation of human NK cell functions upon stimulation through a 58-kDa surface antigen selectively expressed on discrete subsets of NK cells and T lymphocytes. Melero I, Salmerón A, Balboa MA, Aramburu J, López-Botet M. J Immunol; 1994 Feb 15; 152(4):1662-73. PubMed ID: 8120376 [Abstract] [Full Text] [Related]
12. Rat NKp46 activates natural killer cell cytotoxicity and is associated with FcepsilonRIgamma and CD3zeta. Westgaard IH, Berg SF, Vaage JT, Wang LL, Yokoyama WM, Dissen E, Fossum S. J Leukoc Biol; 2004 Dec 15; 76(6):1200-6. PubMed ID: 15356098 [Abstract] [Full Text] [Related]
13. Human natural killer cell adhesion molecules. Differential expression after activation and participation in cytolysis. Robertson MJ, Caligiuri MA, Manley TJ, Levine H, Ritz J. J Immunol; 1990 Nov 15; 145(10):3194-201. PubMed ID: 1700001 [Abstract] [Full Text] [Related]
14. H-2 antigen expression and sensitivity of BL6 melanoma cells to natural killer cell cytotoxicity. Gorelik E, Gunji Y, Herberman RB. J Immunol; 1988 Mar 15; 140(6):2096-102. PubMed ID: 3126240 [Abstract] [Full Text] [Related]
15. Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. Kayagaki N, Yamaguchi N, Nakayama M, Takeda K, Akiba H, Tsutsui H, Okamura H, Nakanishi K, Okumura K, Yagita H. J Immunol; 1999 Aug 15; 163(4):1906-13. PubMed ID: 10438925 [Abstract] [Full Text] [Related]
16. IFN-gamma production and cytotoxicity of IL-2-activated murine NK cells are differentially regulated by MHC class I molecules. Kubota A, Lian RH, Lohwasser S, Salcedo M, Takei F. J Immunol; 1999 Dec 15; 163(12):6488-93. PubMed ID: 10586040 [Abstract] [Full Text] [Related]
17. Lymphokine-activated killer (LAK) cells. IV. Characterization of murine LAK effector subpopulations. Ballas ZK, Rasmussen W. J Immunol; 1990 Jan 01; 144(1):386-95. PubMed ID: 2104892 [Abstract] [Full Text] [Related]
18. Analysis of the murine lymphokine-activated killer (LAK) cell phenomenon: dissection of effectors and progenitors into NK- and T-like cells. Kalland T, Belfrage H, Bhiladvala P, Hedlund G. J Immunol; 1987 Jun 01; 138(11):3640-5. PubMed ID: 3495566 [Abstract] [Full Text] [Related]
19. NK cell granule exocytosis and cytokine production inhibited by Ly-49A engagement. Kim S, Yokoyama WM. Cell Immunol; 1998 Feb 01; 183(2):106-12. PubMed ID: 9606994 [Abstract] [Full Text] [Related]
20. IL-4 regulation of murine lymphokine-activated killer activity in vitro. Effects on the IL-2-induced expansion, cytotoxicity, and phenotype of lymphokine-activated killer effectors. Mulé JJ, Krosnick JA, Rosenberg SA. J Immunol; 1989 Jan 15; 142(2):726-33. PubMed ID: 2783444 [Abstract] [Full Text] [Related] Page: [Next] [New Search]