These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
368 related items for PubMed ID: 20302831
1. Chapter 6 - Carbon nanotubes as substrates/scaffolds for neural cell growth. Lee W, Parpura V. Prog Brain Res; 2009; 180():110-25. PubMed ID: 20302831 [Abstract] [Full Text] [Related]
2. Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes. Matsumoto K, Sato C, Naka Y, Whitby R, Shimizu N. Nanotechnology; 2010 Mar 19; 21(11):115101. PubMed ID: 20173239 [Abstract] [Full Text] [Related]
3. Current investigations into carbon nanotubes for biomedical application. Li X, Fan Y, Watari F. Biomed Mater; 2010 Apr 19; 5(2):22001. PubMed ID: 20339169 [Abstract] [Full Text] [Related]
4. Applications of carbon nanotubes in neurobiology. Malarkey EB, Parpura V. Neurodegener Dis; 2007 Apr 19; 4(4):292-9. PubMed ID: 17627132 [Abstract] [Full Text] [Related]
5. Carbon nanotubes: biomaterial applications. Saito N, Usui Y, Aoki K, Narita N, Shimizu M, Hara K, Ogiwara N, Nakamura K, Ishigaki N, Kato H, Taruta S, Endo M. Chem Soc Rev; 2009 Jul 19; 38(7):1897-903. PubMed ID: 19551170 [Abstract] [Full Text] [Related]
6. Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns. Galvan-Garcia P, Keefer EW, Yang F, Zhang M, Fang S, Zakhidov AA, Baughman RH, Romero MI. J Biomater Sci Polym Ed; 2007 Jul 19; 18(10):1245-61. PubMed ID: 17939884 [Abstract] [Full Text] [Related]
7. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K. J Am Chem Soc; 2005 Mar 30; 127(12):4388-96. PubMed ID: 15783221 [Abstract] [Full Text] [Related]
8. [Research and development of biomedical application of carbon nanotubes and related composites]. Guo X, Xu H. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr 30; 23(2):438-41. PubMed ID: 16706384 [Abstract] [Full Text] [Related]
9. Direct growth of aligned carbon nanotubes on bulk metals. Talapatra S, Kar S, Pal SK, Vajtai R, Ci L, Victor P, Shaijumon MM, Kaur S, Nalamasu O, Ajayan PM. Nat Nanotechnol; 2006 Nov 30; 1(2):112-6. PubMed ID: 18654161 [Abstract] [Full Text] [Related]
10. The effect of an electrically conductive carbon nanotube/collagen composite on neurite outgrowth of PC12 cells. Cho Y, Borgens RB. J Biomed Mater Res A; 2010 Nov 30; 95(2):510-7. PubMed ID: 20665676 [Abstract] [Full Text] [Related]
11. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Foldvari M, Bagonluri M. Nanomedicine; 2008 Sep 30; 4(3):183-200. PubMed ID: 18550450 [Abstract] [Full Text] [Related]
12. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Sato Y, Yokoyama A, Shibata K, Akimoto Y, Ogino S, Nodasaka Y, Kohgo T, Tamura K, Akasaka T, Uo M, Motomiya K, Jeyadevan B, Ishiguro M, Hatakeyama R, Watari F, Tohji K. Mol Biosyst; 2005 Jul 30; 1(2):176-82. PubMed ID: 16880981 [Abstract] [Full Text] [Related]
13. Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. Alpatova AL, Shan W, Babica P, Upham BL, Rogensues AR, Masten SJ, Drown E, Mohanty AK, Alocilja EC, Tarabara VV. Water Res; 2010 Jan 30; 44(2):505-20. PubMed ID: 19945136 [Abstract] [Full Text] [Related]
14. Effects of carbon nanotubes on primary neurons and glial cells. Belyanskaya L, Weigel S, Hirsch C, Tobler U, Krug HF, Wick P. Neurotoxicology; 2009 Jul 30; 30(4):702-11. PubMed ID: 19465056 [Abstract] [Full Text] [Related]
15. Dissociated cell culture for testing effects of carbon nanotubes on neuronal growth. Lee W, Parpura V. Methods Mol Biol; 2012 Jul 30; 846():261-76. PubMed ID: 22367818 [Abstract] [Full Text] [Related]
16. Biofunctionalized carbon nanotubes in neural regeneration: a mini-review. Hwang JY, Shin US, Jang WC, Hyun JK, Wall IB, Kim HW. Nanoscale; 2013 Jan 21; 5(2):487-97. PubMed ID: 23223857 [Abstract] [Full Text] [Related]
17. Elucidation of the role of carbon nanotube patterns on the development of cultured neuronal cells. Béduer A, Seichepine F, Flahaut E, Loubinoux I, Vaysse L, Vieu C. Langmuir; 2012 Dec 18; 28(50):17363-71. PubMed ID: 23190396 [Abstract] [Full Text] [Related]
19. Using single-walled carbon nanotubes nonwoven films as scaffolds to enhance long-term cell proliferation in vitro. Meng J, Song L, Meng J, Kong H, Zhu G, Wang C, Xu L, Xie S, Xu H. J Biomed Mater Res A; 2006 Nov 18; 79(2):298-306. PubMed ID: 16817220 [Abstract] [Full Text] [Related]
20. Interfacing neurons with carbon nanotubes: (re)engineering neuronal signaling. Fabbro A, Cellot G, Prato M, Ballerini L. Prog Brain Res; 2011 Nov 18; 194():241-52. PubMed ID: 21867808 [Abstract] [Full Text] [Related] Page: [Next] [New Search]