These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 20304624
1. Real-time electrical impedance detection of cellular activities of oral cancer cells. Arias LR, Perry CA, Yang L. Biosens Bioelectron; 2010 Jun 15; 25(10):2225-31. PubMed ID: 20304624 [Abstract] [Full Text] [Related]
2. Impedance studies of bio-behavior and chemosensitivity of cancer cells by micro-electrode arrays. Liu Q, Yu J, Xiao L, Tang JC, Zhang Y, Wang P, Yang M. Biosens Bioelectron; 2009 Jan 01; 24(5):1305-10. PubMed ID: 18783935 [Abstract] [Full Text] [Related]
3. Electric cell-substrate impedance sensing (ECIS) based real-time measurement of titer dependent cytotoxicity induced by adenoviral vectors in an IPI-2I cell culture model. Müller J, Thirion C, Pfaffl MW. Biosens Bioelectron; 2011 Jan 15; 26(5):2000-5. PubMed ID: 20875729 [Abstract] [Full Text] [Related]
4. Real-time, label-free monitoring of the cell cycle with a cellular impedance sensing chip. Wang L, Wang L, Yin H, Xing W, Yu Z, Guo M, Cheng J. Biosens Bioelectron; 2010 Jan 15; 25(5):990-5. PubMed ID: 19818595 [Abstract] [Full Text] [Related]
5. A simple mathematical model for electric cell-substrate impedance sensing with extended applications. Xiao C, Luong JH. Biosens Bioelectron; 2010 Mar 15; 25(7):1774-80. PubMed ID: 20096558 [Abstract] [Full Text] [Related]
6. Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells. Susloparova A, Koppenhöfer D, Vu XT, Weil M, Ingebrandt S. Biosens Bioelectron; 2013 Feb 15; 40(1):50-6. PubMed ID: 22795530 [Abstract] [Full Text] [Related]
7. On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Xiao C, Luong JH. Biotechnol Prog; 2003 Feb 15; 19(3):1000-5. PubMed ID: 12790667 [Abstract] [Full Text] [Related]
8. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells. Mamouni J, Yang L. Biomed Microdevices; 2011 Dec 15; 13(6):1075-88. PubMed ID: 21833766 [Abstract] [Full Text] [Related]
9. In-situ monitoring of breast cancer cell (MCF-7) growth and quantification of the cytotoxicity of anticancer drugs fluorouracil and cisplatin. Xiao X, Guo M, Li Q, Cai Q, Yao S, Grimes CA. Biosens Bioelectron; 2008 Oct 15; 24(2):247-52. PubMed ID: 18479908 [Abstract] [Full Text] [Related]
10. A microfluidic device with passive air-bubble valves for real-time measurement of dose-dependent drug cytotoxicity through impedance sensing. Xu Y, Lv Y, Wang L, Xing W, Cheng J. Biosens Bioelectron; 2012 Feb 15; 32(1):300-4. PubMed ID: 22208957 [Abstract] [Full Text] [Related]
11. Direct label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors. Kim A, Ah CS, Park CW, Yang JH, Kim T, Ahn CG, Park SH, Sung GY. Biosens Bioelectron; 2010 Mar 15; 25(7):1767-73. PubMed ID: 20093001 [Abstract] [Full Text] [Related]
12. Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study. Hong J, Kandasamy K, Marimuthu M, Choi CS, Kim S. Analyst; 2011 Jan 21; 136(2):237-45. PubMed ID: 20963234 [Abstract] [Full Text] [Related]
13. A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence. Joo S, Kim KH, Kim HC, Chung TD. Biosens Bioelectron; 2010 Feb 15; 25(6):1509-15. PubMed ID: 20004091 [Abstract] [Full Text] [Related]
14. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS). Price DT, Rahman AR, Bhansali S. Biosens Bioelectron; 2009 Mar 15; 24(7):2071-6. PubMed ID: 19101134 [Abstract] [Full Text] [Related]
15. Label-free analysis of water-polluting parasite by electrochemical impedance spectroscopy. Houssin T, Follet J, Follet A, Dei-Cas E, Senez V. Biosens Bioelectron; 2010 Jan 15; 25(5):1122-9. PubMed ID: 19889527 [Abstract] [Full Text] [Related]
16. Square wave voltammetry versus electrochemical impedance spectroscopy as a rapid detection technique at electrochemical immunosensors. Liu X, Duckworth PA, Wong DK. Biosens Bioelectron; 2010 Feb 15; 25(6):1467-73. PubMed ID: 19954961 [Abstract] [Full Text] [Related]
17. Enhancement of cisplatin induced apoptosis by suberoylanilide hydroxamic acid in human oral squamous cell carcinoma cell lines. Shen J, Huang C, Jiang L, Gao F, Wang Z, Zhang Y, Bai J, Zhou H, Chen Q. Biochem Pharmacol; 2007 Jun 15; 73(12):1901-9. PubMed ID: 17445779 [Abstract] [Full Text] [Related]
18. Monitoring impedance changes associated with motility and mitosis of a single cell. Ghenim L, Kaji H, Hoshino Y, Ishibashi T, Haguet V, Gidrol X, Nishizawa M. Lab Chip; 2010 Oct 07; 10(19):2546-50. PubMed ID: 20676434 [Abstract] [Full Text] [Related]
19. Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system. Ceriotti L, Kob A, Drechsler S, Ponti J, Thedinga E, Colpo P, Ehret R, Rossi F. Anal Biochem; 2007 Dec 01; 371(1):92-104. PubMed ID: 17709091 [Abstract] [Full Text] [Related]
20. Enhanced susceptibility to apoptosis of oral squamous cell carcinoma cells subjected to combined treatment with anticancer drugs and phosphatidylinositol 3-kinase inhibitors. Iwase M, Yoshiba S, Uchid M, Takaoka S, Kurihara Y, Ito D, Hatori M, Shintani S. Int J Oncol; 2007 Nov 01; 31(5):1141-7. PubMed ID: 17912441 [Abstract] [Full Text] [Related] Page: [Next] [New Search]