These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
135 related items for PubMed ID: 20305272
1. Structure of metallo-beta-lactamase IND-7 from a Chryseobacterium indologenes clinical isolate at 1.65-A resolution. Yamaguchi Y, Takashio N, Wachino J, Yamagata Y, Arakawa Y, Matsuda K, Kurosaki H. J Biochem; 2010 Jun; 147(6):905-15. PubMed ID: 20305272 [Abstract] [Full Text] [Related]
2. The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution. Ullah JH, Walsh TR, Taylor IA, Emery DC, Verma CS, Gamblin SJ, Spencer J. J Mol Biol; 1998 Nov 20; 284(1):125-36. PubMed ID: 9811546 [Abstract] [Full Text] [Related]
3. Identification and characterization of a new metallo-beta-lactamase, IND-5, from a clinical isolate of Chryseobacterium indologenes. Perilli M, Caporale B, Celenza G, Pellegrini C, Docquier JD, Mezzatesta M, Rossolini GM, Stefani S, Amicosante G. Antimicrob Agents Chemother; 2007 Aug 20; 51(8):2988-90. PubMed ID: 17470648 [Abstract] [Full Text] [Related]
4. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme. Fabiane SM, Sohi MK, Wan T, Payne DJ, Bateson JH, Mitchell T, Sutton BJ. Biochemistry; 1998 Sep 08; 37(36):12404-11. PubMed ID: 9730812 [Abstract] [Full Text] [Related]
5. Crystal structure of Pseudomonas aeruginosa SPM-1 provides insights into variable zinc affinity of metallo-beta-lactamases. Murphy TA, Catto LE, Halford SE, Hadfield AT, Minor W, Walsh TR, Spencer J. J Mol Biol; 2006 Mar 31; 357(3):890-903. PubMed ID: 16460758 [Abstract] [Full Text] [Related]
6. Effect of pH on the active site of an Arg121Cys mutant of the metallo-beta-lactamase from Bacillus cereus: implications for the enzyme mechanism. Davies AM, Rasia RM, Vila AJ, Sutton BJ, Fabiane SM. Biochemistry; 2005 Mar 29; 44(12):4841-9. PubMed ID: 15779910 [Abstract] [Full Text] [Related]
7. Evidence of adaptability in metal coordination geometry and active-site loop conformation among B1 metallo-beta-lactamases . González JM, Buschiazzo A, Vila AJ. Biochemistry; 2010 Sep 14; 49(36):7930-8. PubMed ID: 20677753 [Abstract] [Full Text] [Related]
8. Structural consequences of the active site substitution Cys181 ==> Ser in metallo-beta-lactamase from Bacteroides fragilis. Li Z, Rasmussen BA, Herzberg O. Protein Sci; 1999 Jan 14; 8(1):249-52. PubMed ID: 10210203 [Abstract] [Full Text] [Related]
9. Crystal structures of the cadmium- and mercury-substituted metallo-beta-lactamase from Bacteroides fragilis. Concha NO, Rasmussen BA, Bush K, Herzberg O. Protein Sci; 1997 Dec 14; 6(12):2671-6. PubMed ID: 9416622 [Abstract] [Full Text] [Related]
11. Metal content and localization during turnover in B. cereus metallo-beta-lactamase. Llarrull LI, Tioni MF, Vila AJ. J Am Chem Soc; 2008 Nov 26; 130(47):15842-51. PubMed ID: 18980306 [Abstract] [Full Text] [Related]
12. Crystal structure of TTHA0252 from Thermus thermophilus HB8, a RNA degradation protein of the metallo-beta-lactamase superfamily. Ishikawa H, Nakagawa N, Kuramitsu S, Masui R. J Biochem; 2006 Oct 26; 140(4):535-42. PubMed ID: 16945939 [Abstract] [Full Text] [Related]
13. Heterogeneity of bla(IND) metallo-beta-lactamase-producing Chryseobacterium indologenes isolates detected in Hefei, China. Lin XH, Xu YH, Cheng J, Li T, Wang ZX. Int J Antimicrob Agents; 2008 Nov 26; 32(5):398-400. PubMed ID: 18707850 [Abstract] [Full Text] [Related]
14. Structure of a phosphonate-inhibited beta-lactamase. An analog of the tetrahedral transition state/intermediate of beta-lactam hydrolysis. Chen CC, Rahil J, Pratt RF, Herzberg O. J Mol Biol; 1993 Nov 05; 234(1):165-78. PubMed ID: 8230196 [Abstract] [Full Text] [Related]
15. Structural basis for the role of Asp-120 in metallo-beta-lactamases. Crisp J, Conners R, Garrity JD, Carenbauer AL, Crowder MW, Spencer J. Biochemistry; 2007 Sep 18; 46(37):10664-74. PubMed ID: 17715946 [Abstract] [Full Text] [Related]
16. Force field design and molecular dynamics simulations of the carbapenem- and cephamycin-resistant dinuclear zinc metallo-beta-lactamase from Bacteroides fragilis and its complex with a biphenyl tetrazole inhibitor. Park H, Merz KM. J Med Chem; 2005 Mar 10; 48(5):1630-7. PubMed ID: 15743204 [Abstract] [Full Text] [Related]
17. IND-6, a highly divergent IND-type metallo-beta-lactamase from Chryseobacterium indologenes strain 597 isolated in Burkina Faso. Zeba B, De Luca F, Dubus A, Delmarcelle M, Simporé J, Nacoulma OG, Rossolini GM, Frère JM, Docquier JD. Antimicrob Agents Chemother; 2009 Oct 10; 53(10):4320-6. PubMed ID: 19651915 [Abstract] [Full Text] [Related]
18. The 1.5-A structure of Chryseobacterium meningosepticum zinc beta-lactamase in complex with the inhibitor, D-captopril. García-Saez I, Hopkins J, Papamicael C, Franceschini N, Amicosante G, Rossolini GM, Galleni M, Frère JM, Dideberg O. J Biol Chem; 2003 Jun 27; 278(26):23868-73. PubMed ID: 12684522 [Abstract] [Full Text] [Related]
19. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Bebrone C. Biochem Pharmacol; 2007 Dec 15; 74(12):1686-701. PubMed ID: 17597585 [Abstract] [Full Text] [Related]
20. Biomimetic hydrolysis of penicillin G catalyzed by dinuclear zinc(II) complexes: structure-activity correlations in beta-lactamase model systems. Bauer-Siebenlist B, Dechert S, Meyer F. Chemistry; 2005 Sep 05; 11(18):5343-52. PubMed ID: 16003817 [Abstract] [Full Text] [Related] Page: [Next] [New Search]