These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
196 related items for PubMed ID: 20305352
1. Maximum entropy method and charge flipping, a powerful combination to visualize the true nature of structural disorder from in situ X-ray powder diffraction data. Samy A, Dinnebier RE, van Smaalen S, Jansen M. Acta Crystallogr B; 2010 Apr; 66(Pt 2):184-95. PubMed ID: 20305352 [Abstract] [Full Text] [Related]
2. The MEM/Rietveld method with nano-applications - accurate charge-density studies of nano-structured materials by synchrotron-radiation powder diffraction. Takata M. Acta Crystallogr A; 2008 Jan; 64(Pt 1):232-45. PubMed ID: 18156688 [Abstract] [Full Text] [Related]
3. Application of maximum-entropy maps in the accurate refinement of a putative acylphosphatase using 1.3 A X-ray diffraction data. Nishibori E, Nakamura T, Arimoto M, Aoyagi S, Ago H, Miyano M, Ebisuzaki T, Sakata M. Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):237-47. PubMed ID: 18323618 [Abstract] [Full Text] [Related]
4. Ab initio phasing of X-ray powder diffraction patterns by charge flipping. Wu J, Leinenweber K, Spence JC, O'Keeffe M. Nat Mater; 2006 Aug; 5(8):647-52. PubMed ID: 16845419 [Abstract] [Full Text] [Related]
5. Interstitial Zn atoms do the trick in thermoelectric zinc antimonide, Zn4Sb3: a combined maximum entropy method X-ray electron density and ab initio electronic structure study. Cargnoni F, Nishibori E, Rabiller P, Bertini L, Snyder GJ, Christensen M, Gatti C, Iversen BB. Chemistry; 2004 Aug 20; 10(16):3861-70. PubMed ID: 15317052 [Abstract] [Full Text] [Related]
6. Maximum-entropy-method charge densities based on structure-factor extraction with the commonly used Rietveld refinement programs GSAS, FullProf and Jana2006. Bindzus N, Iversen BB. Acta Crystallogr A; 2012 Nov 20; 68(Pt 6):750-62. PubMed ID: 23075617 [Abstract] [Full Text] [Related]
7. Observation of hydrogen in deuterated methane hydrate by maximum entropy method with neutron powder diffraction. Hoshikawa A, Igawa N, Yamauchi H, Ishii Y. J Chem Phys; 2006 Jul 21; 125(3):34505. PubMed ID: 16863360 [Abstract] [Full Text] [Related]
8. Accurate charge density of the tripeptide Ala-Pro-Ala with the maximum entropy method (MEM): influence of data resolution. Hofmann A, Kalinowski R, Luger P, van Smaalen S. Acta Crystallogr B; 2007 Aug 21; 63(Pt 4):633-43. PubMed ID: 17641434 [Abstract] [Full Text] [Related]
9. Determination of the crystal structure of magnesium perchlorate hydrates by X-ray powder diffraction and the charge-flipping method. Robertson K, Bish D. Acta Crystallogr B; 2010 Dec 21; 66(Pt 6):579-84. PubMed ID: 21099020 [Abstract] [Full Text] [Related]
10. Structure of the borosilicate zeolite catalyst SSZ-82 solved using 2D-XPD charge flipping. Xie D, McCusker LB, Baerlocher C. J Am Chem Soc; 2011 Dec 21; 133(50):20604-10. PubMed ID: 22077100 [Abstract] [Full Text] [Related]
11. Modulation functions of incommensurately modulated Cr2P2O7 studied by the maximum entropy method (MEM). Li L, Schönleber A, van Smaalen S. Acta Crystallogr B; 2010 Apr 21; 66(Pt 2):130-40. PubMed ID: 20305346 [Abstract] [Full Text] [Related]
12. Residue-based charge flipping: a new variant of an emerging algorithm for structure solution from X-ray diffraction data. Zhou Z, Harris KD. J Phys Chem A; 2008 Jun 05; 112(22):4863-8. PubMed ID: 18461920 [Abstract] [Full Text] [Related]
13. Accurate structure factors and experimental charge densities from synchrotron X-ray powder diffraction data at SPring-8. Nishibori E, Sunaoshi E, Yoshida A, Aoyagi S, Kato K, Takata M, Sakata M. Acta Crystallogr A; 2007 Jan 05; 63(Pt 1):43-52. PubMed ID: 17179606 [Abstract] [Full Text] [Related]
14. Structure of Ca(BD4)2 beta-phase from combined neutron and synchrotron X-ray powder diffraction data and density functional calculations. Buchter F, Łodziana Z, Remhof A, Friedrichs O, Borgschulte A, Mauron P, Züttel A, Sheptyakov D, Barkhordarian G, Bormann R, Chłopek K, Fichtner M, Sørby M, Riktor M, Hauback B, Orimo S. J Phys Chem B; 2008 Jul 10; 112(27):8042-8. PubMed ID: 18553898 [Abstract] [Full Text] [Related]
15. Multipole electron-density modelling of synchrotron powder diffraction data: the case of diamond. Svendsen H, Overgaard J, Busselez R, Arnaud B, Rabiller P, Kurita A, Nishibori E, Sakata M, Takata M, Iversen BB. Acta Crystallogr A; 2010 Jul 10; 66(Pt 4):458-69. PubMed ID: 20555186 [Abstract] [Full Text] [Related]
16. X-ray powder diffraction structure determination of gamma-butyrolactone at 180 K: phase-problem solution from the lattice energy minimization with two independent molecules. Papoular RJ, Allouchi H, Chagnes A, Dzyabchenko A, Carré B, Lemordant D, Agafonov V. Acta Crystallogr B; 2005 Jun 10; 61(Pt 3):312-20. PubMed ID: 15914896 [Abstract] [Full Text] [Related]
17. Experience with phase extension and ab initio phase determination in macromolecular crystallography using maximum-entropy methods. Sjölin L, Svensson LA. Acta Crystallogr D Biol Crystallogr; 1993 Jan 01; 49(Pt 1):66-74. PubMed ID: 15299546 [Abstract] [Full Text] [Related]
18. Crystal structures and in-situ formation study of mayenite electrides. Palacios L, De La Torre AG, Bruque S, García-Muñoz JL, García-Granda S, Sheptyakov D, Aranda MA. Inorg Chem; 2007 May 14; 46(10):4167-76. PubMed ID: 17432850 [Abstract] [Full Text] [Related]
19. The maximum-entropy method in superspace. van Smaalen S, Palatinus L, Schneider M. Acta Crystallogr A; 2003 Sep 14; 59(Pt 5):459-69. PubMed ID: 12944610 [Abstract] [Full Text] [Related]
20. Direct space methods for powder X-ray diffraction for guest-host materials: applications to cage occupancies and guest distributions in clathrate hydrates. Takeya S, Udachin KA, Moudrakovski IL, Susilo R, Ripmeester JA. J Am Chem Soc; 2010 Jan 20; 132(2):524-31. PubMed ID: 20000734 [Abstract] [Full Text] [Related] Page: [Next] [New Search]