These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
286 related items for PubMed ID: 20307471
1. A review of the differences between normal and osteoarthritis articular cartilage in human knee and ankle joints. Hendren L, Beeson P. Foot (Edinb); 2009 Sep; 19(3):171-6. PubMed ID: 20307471 [Abstract] [Full Text] [Related]
2. Chondrocyte matrix metalloproteinase-8: up-regulation of neutrophil collagenase by interleukin-1 beta in human cartilage from knee and ankle joints. Chubinskaya S, Huch K, Mikecz K, Cs-Szabo G, Hasty KA, Kuettner KE, Cole AA. Lab Invest; 1996 Jan; 74(1):232-40. PubMed ID: 8569187 [Abstract] [Full Text] [Related]
3. Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage. Aigner T, Hemmel M, Neureiter D, Gebhard PM, Zeiler G, Kirchner T, McKenna L. Arthritis Rheum; 2001 Jun; 44(6):1304-12. PubMed ID: 11407689 [Abstract] [Full Text] [Related]
4. Mechanical injury potentiates proteoglycan catabolism induced by interleukin-6 with soluble interleukin-6 receptor and tumor necrosis factor alpha in immature bovine and adult human articular cartilage. Sui Y, Lee JH, DiMicco MA, Vanderploeg EJ, Blake SM, Hung HH, Plaas AH, James IE, Song XY, Lark MW, Grodzinsky AJ. Arthritis Rheum; 2009 Oct; 60(10):2985-96. PubMed ID: 19790045 [Abstract] [Full Text] [Related]
5. Human knee and ankle cartilage explants: catabolic differences. Eger W, Schumacher BL, Mollenhauer J, Kuettner KE, Cole AA. J Orthop Res; 2002 May; 20(3):526-34. PubMed ID: 12038627 [Abstract] [Full Text] [Related]
7. Differential matrix degradation and turnover in early cartilage lesions of human knee and ankle joints. Aurich M, Squires GR, Reiner A, Mollenhauer JA, Kuettner KE, Poole AR, Cole AA. Arthritis Rheum; 2005 Jan; 52(1):112-9. PubMed ID: 15641059 [Abstract] [Full Text] [Related]
8. Mechanical responses and integrin associated protein expression by human ankle chondrocytes. Orazizadeh M, Cartlidge C, Wright MO, Millward-Sadler SJ, Nieman J, Halliday BP, Lee HS, Salter DM. Biorheology; 2006 Jan; 43(3,4):249-58. PubMed ID: 16912398 [Abstract] [Full Text] [Related]
9. Osteoarthritis of the ankle: bridging concepts in basic science with clinical care. Joseph RM. Clin Podiatr Med Surg; 2009 Apr; 26(2):169-84. PubMed ID: 19389591 [Abstract] [Full Text] [Related]
10. Water-soluble C60 fullerene prevents degeneration of articular cartilage in osteoarthritis via down-regulation of chondrocyte catabolic activity and inhibition of cartilage degeneration during disease development. Yudoh K, Shishido K, Murayama H, Yano M, Matsubayashi K, Takada H, Nakamura H, Masuko K, Kato T, Nishioka K. Arthritis Rheum; 2007 Oct; 56(10):3307-18. PubMed ID: 17907184 [Abstract] [Full Text] [Related]
11. Effects of shear stress on articular chondrocyte metabolism. Lane Smith R, Trindade MC, Ikenoue T, Mohtai M, Das P, Carter DR, Goodman SB, Schurman DJ. Biorheology; 2000 Oct; 37(1-2):95-107. PubMed ID: 10912182 [Abstract] [Full Text] [Related]
12. Cultured human ankle and knee cartilage differ in susceptibility to damage mediated by fibronectin fragments. Kang Y, Koepp H, Cole AA, Kuettner KE, Homandberg GA. J Orthop Res; 1998 Sep; 16(5):551-6. PubMed ID: 9820277 [Abstract] [Full Text] [Related]
13. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Yudoh K, Nguyen vT, Nakamura H, Hongo-Masuko K, Kato T, Nishioka K. Arthritis Res Ther; 2005 Sep; 7(2):R380-91. PubMed ID: 15743486 [Abstract] [Full Text] [Related]
14. Expression of bone morphogenetic protein 6 in healthy and osteoarthritic human articular chondrocytes and stimulation of matrix synthesis in vitro. Bobacz K, Gruber R, Soleiman A, Erlacher L, Smolen JS, Graninger WB. Arthritis Rheum; 2003 Sep; 48(9):2501-8. PubMed ID: 13130469 [Abstract] [Full Text] [Related]
15. The combination of insulin-like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes. Loeser RF, Pacione CA, Chubinskaya S. Arthritis Rheum; 2003 Aug; 48(8):2188-96. PubMed ID: 12905472 [Abstract] [Full Text] [Related]
17. Expression of Sox9 and type IIA procollagen during attempted repair of articular cartilage damage in a transgenic mouse model of osteoarthritis. Salminen H, Vuorio E, Säämänen AM. Arthritis Rheum; 2001 Apr; 44(4):947-55. PubMed ID: 11315934 [Abstract] [Full Text] [Related]
18. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. Treppo S, Koepp H, Quan EC, Cole AA, Kuettner KE, Grodzinsky AJ. J Orthop Res; 2000 Sep; 18(5):739-48. PubMed ID: 11117295 [Abstract] [Full Text] [Related]
19. Evidence for a key role of leptin in osteoarthritis. Dumond H, Presle N, Terlain B, Mainard D, Loeuille D, Netter P, Pottie P. Arthritis Rheum; 2003 Nov; 48(11):3118-29. PubMed ID: 14613274 [Abstract] [Full Text] [Related]
20. Hyperthermia for the treatment of articular cartilage with osteoarthritis. Takahashi KA, Tonomura H, Arai Y, Terauchi R, Honjo K, Hiraoka N, Hojo T, Kunitomo T, Kubo T. Int J Hyperthermia; 2009 Dec; 25(8):661-7. PubMed ID: 19905896 [Abstract] [Full Text] [Related] Page: [Next] [New Search]