These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
168 related items for PubMed ID: 20329854
1. Three-dimensional nature of the glottal jet. Triep M, Brücker C. J Acoust Soc Am; 2010 Mar; 127(3):1537-47. PubMed ID: 20329854 [Abstract] [Full Text] [Related]
2. Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production. Sidlof P, Svec JG, Horácek J, Veselý J, Klepácek I, Havlík R. J Biomech; 2008 Mar; 41(5):985-95. PubMed ID: 18289553 [Abstract] [Full Text] [Related]
3. An experimental analysis of the pressures and flows within a driven mechanical model of phonation. Kucinschi BR, Scherer RC, Dewitt KJ, Ng TT. J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957 [Abstract] [Full Text] [Related]
4. Optimized transformation of the glottal motion into a mechanical model. Triep M, Brücker C, Stingl M, Döllinger M. Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384 [Abstract] [Full Text] [Related]
5. Flow visualization and acoustic consequences of the air moving through a static model of the human larynx. Kucinschi BR, Scherer RC, DeWitt KJ, Ng TT. J Biomech Eng; 2006 Jun; 128(3):380-90. PubMed ID: 16706587 [Abstract] [Full Text] [Related]
6. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling. Kaburagi T. J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519 [Abstract] [Full Text] [Related]
7. Asymmetric glottal jet deflection: differences of two- and three-dimensional models. Mattheus W, Brücker C. J Acoust Soc Am; 2011 Dec; 130(6):EL373-9. PubMed ID: 22225129 [Abstract] [Full Text] [Related]
8. Theoretical simulation and experimental validation of inverse quasi-one-dimensional steady and unsteady glottal flow models. Cisonni J, Van Hirtum A, Pelorson X, Willems J. J Acoust Soc Am; 2008 Jul; 124(1):535-45. PubMed ID: 18646996 [Abstract] [Full Text] [Related]
9. Experimental investigation of the influence of a posterior gap on glottal flow and sound. Park JB, Mongeau L. J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605 [Abstract] [Full Text] [Related]
10. Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis. Fulcher LP, Scherer RC, Zhai G, Zhu Z. J Voice; 2006 Dec; 20(4):489-512. PubMed ID: 16434169 [Abstract] [Full Text] [Related]
11. Unsteady behavior of flow in a scaled-up vocal folds model. Krane M, Barry M, Wei T. J Acoust Soc Am; 2007 Dec; 122(6):3659-70. PubMed ID: 18247773 [Abstract] [Full Text] [Related]
12. Influence of glottic aperture on the tracheal flow. Brouns M, Verbanck S, Lacor C. J Biomech; 2007 Dec; 40(1):165-72. PubMed ID: 16403504 [Abstract] [Full Text] [Related]
13. Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees. Shinwari D, Scherer RC, DeWitt KJ, Afjeh AA. J Acoust Soc Am; 2003 Jan; 113(1):487-97. PubMed ID: 12558286 [Abstract] [Full Text] [Related]
14. Low-dimensional models of the glottal flow incorporating viscous-inviscid interaction. Kaburagi T, Tanabe Y. J Acoust Soc Am; 2009 Jan; 125(1):391-404. PubMed ID: 19173426 [Abstract] [Full Text] [Related]
15. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control. Zhang Z. J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022 [Abstract] [Full Text] [Related]
16. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds. Tao C, Zhang Y, Hottinger DG, Jiang JJ. J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863 [Abstract] [Full Text] [Related]
17. The effect of glottal angle on intraglottal pressure. Li S, Scherer RC, Wan M, Wang S, Wu H. J Acoust Soc Am; 2006 Jan; 119(1):539-48. PubMed ID: 16454307 [Abstract] [Full Text] [Related]
18. The phonation critical condition in rectangular glottis with wide prephonatory gaps. Tao C, Jiang JJ. J Acoust Soc Am; 2008 Mar; 123(3):1637-41. PubMed ID: 18345851 [Abstract] [Full Text] [Related]
19. Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model. Drechsel JS, Thomson SL. J Acoust Soc Am; 2008 Jun; 123(6):4434-45. PubMed ID: 18537394 [Abstract] [Full Text] [Related]
20. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx. Farbos de Luzan C, Chen J, Mihaescu M, Khosla SM, Gutmark E. J Biomech; 2015 May 01; 48(7):1248-57. PubMed ID: 25835787 [Abstract] [Full Text] [Related] Page: [Next] [New Search]