These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 20329854

  • 21. A computational study of asymmetric glottal jet deflection during phonation.
    Zheng X, Mittal R, Bielamowicz S.
    J Acoust Soc Am; 2011 Apr; 129(4):2133-43. PubMed ID: 21476669
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Influence of a constriction in the near field of the vocal folds: physical modeling and experimental validation.
    Bailly L, Pelorson X, Henrich N, Ruty N.
    J Acoust Soc Am; 2008 Nov; 124(5):3296-308. PubMed ID: 19045812
    [Abstract] [Full Text] [Related]

  • 24. The influence of epilarynx area on vocal fold dynamics.
    Döllinger M, Berry DA, Montequin DW.
    Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Flow-structure-acoustic interaction in a human voice model.
    Becker S, Kniesburges S, Müller S, Delgado A, Link G, Kaltenbacher M, Döllinger M.
    J Acoust Soc Am; 2009 Mar; 125(3):1351-61. PubMed ID: 19275292
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model.
    Zheng X, Mittal R, Xue Q, Bielamowicz S.
    J Acoust Soc Am; 2011 Jul; 130(1):404-15. PubMed ID: 21786908
    [Abstract] [Full Text] [Related]

  • 29. Estimation of impact stress using an aeroelastic model of voice production.
    Horácek J, Laukkanen AM, Sidlof P.
    Logoped Phoniatr Vocol; 2007 Jul; 32(4):185-92. PubMed ID: 17990190
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Effect of the ventricular folds in a synthetic larynx model.
    Kniesburges S, Birk V, Lodermeyer A, Schützenberger A, Bohr C, Becker S.
    J Biomech; 2017 Apr 11; 55():128-133. PubMed ID: 28285747
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Theoretical consideration of the flow behavior in oscillating vocal fold.
    Deguchi S, Hyakutake T.
    J Biomech; 2009 May 11; 42(7):824-9. PubMed ID: 19269641
    [Abstract] [Full Text] [Related]

  • 36. The effects of the false vocal fold gaps on intralaryngeal pressure distributions and their effects on phonation.
    Li S, Wan M, Wang S.
    Sci China C Life Sci; 2008 Nov 11; 51(11):1045-51. PubMed ID: 18989648
    [Abstract] [Full Text] [Related]

  • 37. Theoretical assessment of unsteady aerodynamic effects in phonation.
    Krane MH, Wei T.
    J Acoust Soc Am; 2006 Sep 11; 120(3):1578-88. PubMed ID: 17004480
    [Abstract] [Full Text] [Related]

  • 38. Flow separation in a computational oscillating vocal fold model.
    Alipour F, Scherer RC.
    J Acoust Soc Am; 2004 Sep 11; 116(3):1710-9. PubMed ID: 15478438
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. [Glottal and supraglottal configuration during whispering].
    Fleischer S, Kothe C, Hess M.
    Laryngorhinootologie; 2007 Apr 11; 86(4):271-5. PubMed ID: 17219333
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.