These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


90 related items for PubMed ID: 20352338

  • 1. Tuning multidomain hemodynamic simulations to match physiological measurements.
    Spilker RL, Taylor CA.
    Ann Biomed Eng; 2010 Aug; 38(8):2635-48. PubMed ID: 20352338
    [Abstract] [Full Text] [Related]

  • 2. A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease.
    Wan J, Steele B, Spicer SA, Strohband S, Feijóo GR, Hughes TJ, Taylor CA.
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):195-206. PubMed ID: 12186712
    [Abstract] [Full Text] [Related]

  • 3. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R, Vignon-Clementel IE, Figueroa CA, Taylor CA.
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [Abstract] [Full Text] [Related]

  • 4. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions.
    Pedersen EM, Sung HW, Burlson AC, Yoganathan AP.
    J Biomech; 1993 Oct; 26(10):1237-47. PubMed ID: 8253828
    [Abstract] [Full Text] [Related]

  • 5. A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models.
    Xiao N, Alastruey J, Alberto Figueroa C.
    Int J Numer Method Biomed Eng; 2014 Feb; 30(2):204-31. PubMed ID: 24115509
    [Abstract] [Full Text] [Related]

  • 6. Pulsatile flow visualization in a model of the human abdominal aorta and aortic bifurcation.
    Pedersen EM, Yoganathan AP, Lefebvre XP.
    J Biomech; 1992 Aug; 25(8):935-44. PubMed ID: 1639838
    [Abstract] [Full Text] [Related]

  • 7. Simple and accurate way for estimating total and segmental arterial compliance: the pulse pressure method.
    Stergiopulos N, Meister JJ, Westerhof N.
    Ann Biomed Eng; 1994 Aug; 22(4):392-7. PubMed ID: 7998684
    [Abstract] [Full Text] [Related]

  • 8. Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries.
    Spilker RL, Feinstein JA, Parker DW, Reddy VM, Taylor CA.
    Ann Biomed Eng; 2007 Apr; 35(4):546-59. PubMed ID: 17294117
    [Abstract] [Full Text] [Related]

  • 9. A computer simulation of the blood flow at the aortic bifurcation with flexible walls.
    Lou Z, Yang WJ.
    J Biomech Eng; 1993 Aug; 115(3):306-15. PubMed ID: 8231147
    [Abstract] [Full Text] [Related]

  • 10. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model.
    Kim HJ, Vignon-Clementel IE, Figueroa CA, LaDisa JF, Jansen KE, Feinstein JA, Taylor CA.
    Ann Biomed Eng; 2009 Nov; 37(11):2153-69. PubMed ID: 19609676
    [Abstract] [Full Text] [Related]

  • 11. Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implications for indicators of abnormal flow.
    Morbiducci U, Gallo D, Massai D, Consolo F, Ponzini R, Antiga L, Bignardi C, Deriu MA, Redaelli A.
    J Biomech Eng; 2010 Sep; 132(9):091005. PubMed ID: 20815639
    [Abstract] [Full Text] [Related]

  • 12. Three-dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data.
    Troianowski G, Taylor CA, Feinstein JA, Vignon-Clementel IE.
    J Biomech Eng; 2011 Nov; 133(11):111006. PubMed ID: 22168738
    [Abstract] [Full Text] [Related]

  • 13. Tuning a lattice-Boltzmann model for applications in computational hemodynamics.
    Golbert DR, Blanco PJ, Clausse A, Feijóo RA.
    Med Eng Phys; 2012 Apr; 34(3):339-49. PubMed ID: 21880536
    [Abstract] [Full Text] [Related]

  • 14. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M, Chua LP, Ghista DN, Tan YS.
    Biomed Eng Online; 2005 Mar 04; 4():14. PubMed ID: 15745458
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Blood flow in a compliant vessel by the immersed boundary method.
    Kim Y, Lim S, Raman SV, Simonetti OP, Friedman A.
    Ann Biomed Eng; 2009 May 04; 37(5):927-42. PubMed ID: 19283479
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.