These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


206 related items for PubMed ID: 20359243

  • 1. Nanoporous carbon supercapacitors in an ionic liquid: a computer simulation study.
    Shim Y, Kim HJ.
    ACS Nano; 2010 Apr 27; 4(4):2345-55. PubMed ID: 20359243
    [Abstract] [Full Text] [Related]

  • 2. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.
    Huang J, Sumpter BG, Meunier V.
    Chemistry; 2008 Apr 27; 14(22):6614-26. PubMed ID: 18576455
    [Abstract] [Full Text] [Related]

  • 3. Electrosorption selectivity of ions from mixtures of electrolytes inside nanopores.
    Hou CH, Taboada-Serrano P, Yiacoumi S, Tsouris C.
    J Chem Phys; 2008 Dec 14; 129(22):224703. PubMed ID: 19071935
    [Abstract] [Full Text] [Related]

  • 4. Chemical capacitance of nanoporous-nanocrystalline TiO2 in a room temperature ionic liquid.
    Fabregat-Santiago F, Randriamahazaka H, Zaban A, Garcia-Cañadas J, Garcia-Belmonte G, Bisquert J.
    Phys Chem Chem Phys; 2006 Apr 21; 8(15):1827-33. PubMed ID: 16633668
    [Abstract] [Full Text] [Related]

  • 5. Carbon nanotubes in benzene: internal and external solvation.
    Shim Y, Jung Y, Kim HJ.
    Phys Chem Chem Phys; 2011 Mar 07; 13(9):3969-78. PubMed ID: 21225031
    [Abstract] [Full Text] [Related]

  • 6. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes.
    Shao Q, Huang L, Zhou J, Lu L, Zhang L, Lu X, Jiang S, Gubbins KE, Shen W.
    Phys Chem Chem Phys; 2008 Apr 14; 10(14):1896-906. PubMed ID: 18368182
    [Abstract] [Full Text] [Related]

  • 7. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte.
    Vatamanu J, Borodin O, Smith GD.
    Phys Chem Chem Phys; 2010 Jan 07; 12(1):170-82. PubMed ID: 20024457
    [Abstract] [Full Text] [Related]

  • 8. MD study of solvation in the mixture of a room-temperature ionic liquid and CO(2).
    Shim Y, Kim HJ.
    J Phys Chem B; 2010 Aug 12; 114(31):10160-70. PubMed ID: 20684639
    [Abstract] [Full Text] [Related]

  • 9. A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations.
    Kondrat S, Georgi N, Fedorov MV, Kornyshev AA.
    Phys Chem Chem Phys; 2011 Jun 21; 13(23):11359-66. PubMed ID: 21566824
    [Abstract] [Full Text] [Related]

  • 10. A "counter-charge layer in generalized solvents" framework for electrical double layers in neat and hybrid ionic liquid electrolytes.
    Feng G, Huang J, Sumpter BG, Meunier V, Qiao R.
    Phys Chem Chem Phys; 2011 Aug 28; 13(32):14723-34. PubMed ID: 21755079
    [Abstract] [Full Text] [Related]

  • 11. The importance of ion size and electrode curvature on electrical double layers in ionic liquids.
    Feng G, Qiao R, Huang J, Dai S, Sumpter BG, Meunier V.
    Phys Chem Chem Phys; 2011 Jan 21; 13(3):1152-61. PubMed ID: 21079823
    [Abstract] [Full Text] [Related]

  • 12. Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors.
    Rose M, Korenblit Y, Kockrick E, Borchardt L, Oschatz M, Kaskel S, Yushin G.
    Small; 2011 Apr 18; 7(8):1108-17. PubMed ID: 21449047
    [Abstract] [Full Text] [Related]

  • 13. Interactive effects of pore size control and carbonization temperatures on supercapacitive behaviors of porous carbon/carbon nanotube composites.
    Kim JI, Rhee KY, Park SJ.
    J Colloid Interface Sci; 2012 Jul 01; 377(1):307-12. PubMed ID: 22494688
    [Abstract] [Full Text] [Related]

  • 14. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ, Chung H, Han CH, Kim W.
    Nanotechnology; 2012 Feb 17; 23(6):065401. PubMed ID: 22248712
    [Abstract] [Full Text] [Related]

  • 15. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes.
    Vatamanu J, Vatamanu M, Bedrov D.
    ACS Nano; 2015 Jun 23; 9(6):5999-6017. PubMed ID: 26038979
    [Abstract] [Full Text] [Related]

  • 16. Graphene-based supercapacitors in the parallel-plate electrode configuration: ionic liquids versus organic electrolytes.
    Shim Y, Kim HJ, Jung Y.
    Faraday Discuss; 2012 Jun 23; 154():249-63; discussion 313-33, 465-71. PubMed ID: 22455024
    [Abstract] [Full Text] [Related]

  • 17. A molecular dynamics computer simulation study of room-temperature ionic liquids. II. Equilibrium and nonequilibrium solvation dynamics.
    Shim Y, Choi MY, Kim HJ.
    J Chem Phys; 2005 Jan 22; 122(4):44511. PubMed ID: 15740271
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Electrosorption capacitance of nanostructured carbon-based materials.
    Hou CH, Liang C, Yiacoumi S, Dai S, Tsouris C.
    J Colloid Interface Sci; 2006 Oct 01; 302(1):54-61. PubMed ID: 16842809
    [Abstract] [Full Text] [Related]

  • 20. Computer Simulation Study of Graphene Oxide Supercapacitors: Charge Screening Mechanism.
    Park SW, DeYoung AD, Dhumal NR, Shim Y, Kim HJ, Jung Y.
    J Phys Chem Lett; 2016 Apr 07; 7(7):1180-6. PubMed ID: 26966918
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.