These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1060 related items for PubMed ID: 20362270
1. Microscopic description of a drop on a solid surface. Ruckenstein E, Berim GO. Adv Colloid Interface Sci; 2010 Jun 14; 157(1-2):1-33. PubMed ID: 20362270 [Abstract] [Full Text] [Related]
2. Dependence of the macroscopic contact angle on the liquid-solid interaction parameters and temperature. Berim GO, Ruckenstein E. J Chem Phys; 2009 May 14; 130(18):184712. PubMed ID: 19449948 [Abstract] [Full Text] [Related]
3. Simple expression for the dependence of the nanodrop contact angle on liquid-solid interactions and temperature. Berim GO, Ruckenstein E. J Chem Phys; 2009 Jan 28; 130(4):044709. PubMed ID: 19191406 [Abstract] [Full Text] [Related]
4. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM. Adv Colloid Interface Sci; 2004 Nov 29; 111(1-2):3-27. PubMed ID: 15571660 [Abstract] [Full Text] [Related]
5. Cylindrical droplet on nanofibers: a step toward the clam-shell drop description. Berim GO, Ruckenstein E. J Phys Chem B; 2005 Jun 30; 109(25):12515-24. PubMed ID: 16852548 [Abstract] [Full Text] [Related]
6. Microscopic treatment of a barrel drop on fibers and nanofibers. Berim GO, Ruckenstein E. J Colloid Interface Sci; 2005 Jun 15; 286(2):681-95. PubMed ID: 15897087 [Abstract] [Full Text] [Related]
7. Nanodrop on a nanorough solid surface: density functional theory considerations. Berim GO, Ruckenstein E. J Chem Phys; 2008 Jul 07; 129(1):014708. PubMed ID: 18624497 [Abstract] [Full Text] [Related]
8. Nanodroplets on a planar solid surface: temperature, pressure, and size dependence of their density and contact angles. Berim GO, Ruckenstein E. Langmuir; 2006 Jan 31; 22(3):1063-73. PubMed ID: 16430266 [Abstract] [Full Text] [Related]
9. Microscopic calculation of the sticking force for nanodrops on an inclined surface. Berim GO, Ruckenstein E. J Chem Phys; 2008 Sep 21; 129(11):114709. PubMed ID: 19044982 [Abstract] [Full Text] [Related]
10. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY, Cansoy CE. Langmuir; 2009 Dec 15; 25(24):14135-45. PubMed ID: 19630435 [Abstract] [Full Text] [Related]
11. Mean-field theory of liquid droplets on roughened solid surfaces: application to superhydrophobicity. Porcheron F, Monson PA. Langmuir; 2006 Feb 14; 22(4):1595-601. PubMed ID: 16460079 [Abstract] [Full Text] [Related]
12. Contact angles of nanodrops on chemically rough surfaces. Berim GO, Ruckenstein E. Langmuir; 2009 Aug 18; 25(16):9285-9. PubMed ID: 19419177 [Abstract] [Full Text] [Related]
13. A heuristic approach for nanodrops on a smooth solid surface. Berim GO, Ruckenstein E. Phys Chem Chem Phys; 2019 Jun 28; 21(24):13215-13221. PubMed ID: 31179452 [Abstract] [Full Text] [Related]
14. Thermodynamic modeling of contact angles on rough, heterogeneous surfaces. Long J, Hyder MN, Huang RY, Chen P. Adv Colloid Interface Sci; 2005 Dec 30; 118(1-3):173-90. PubMed ID: 16154106 [Abstract] [Full Text] [Related]
15. Nanodrop on a smooth solid surface with hidden roughness. Density functional theory considerations. Berim GO, Ruckenstein E. Nanoscale; 2015 May 07; 7(17):7873-84. PubMed ID: 25855034 [Abstract] [Full Text] [Related]
16. Microscopic Drop Profiles and the Origins of Line Tension. Solomentsev Y, White LR. J Colloid Interface Sci; 1999 Oct 01; 218(1):122-136. PubMed ID: 10489286 [Abstract] [Full Text] [Related]
17. Nanodrop on a nanorough hydrophilic solid surface: contact angle dependence on the size, arrangement, and composition of the pillars. Berim GO, Ruckenstein E. J Colloid Interface Sci; 2011 Jul 01; 359(1):304-10. PubMed ID: 21486670 [Abstract] [Full Text] [Related]
18. Drop size effect on contact angle explained by nonextensive thermodynamics. Young's equation revisited. Letellier P, Mayaffre A, Turmine M. J Colloid Interface Sci; 2007 Oct 15; 314(2):604-14. PubMed ID: 17624363 [Abstract] [Full Text] [Related]
19. Validity of the "sharp-kink approximation" for water and other fluids. Garcia R, Osborne K, Subashi E. J Phys Chem B; 2008 Jul 10; 112(27):8114-9. PubMed ID: 18553903 [Abstract] [Full Text] [Related]
20. Contact-Angle Hysteresis Caused by a Random Distribution of Weak Heterogeneities on a Solid Surface. Öpik U. J Colloid Interface Sci; 2000 Mar 15; 223(2):143-166. PubMed ID: 10700398 [Abstract] [Full Text] [Related] Page: [Next] [New Search]