These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A finite difference method for a coupled model of wave propagation in poroelastic materials. Zhang Y, Song L, Deffenbaugh M, Toksöz MN. J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735 [Abstract] [Full Text] [Related]
12. Perturbations of the seismic reflectivity of a fluid-saturated depth-dependent poroelastic medium. de Barros L, Dietrich M. J Acoust Soc Am; 2008 Mar; 123(3):1409-20. PubMed ID: 18345830 [Abstract] [Full Text] [Related]
14. Theoretical simulation of electroacoustic borehole logging in a fluid-saturated porous formation. Hu H, Guan W, Harris JM. J Acoust Soc Am; 2007 Jul; 122(1):135-45. PubMed ID: 17614473 [Abstract] [Full Text] [Related]
15. A mode matching method for modeling dissipative silencers lined with poroelastic materials and containing mean flow. Nennig B, Perrey-Debain E, Ben Tahar M. J Acoust Soc Am; 2010 Dec; 128(6):3308-20. PubMed ID: 21218865 [Abstract] [Full Text] [Related]
16. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation. Dagrau F, Rénier M, Marchiano R, Coulouvrat F. J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874 [Abstract] [Full Text] [Related]
17. Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation. Berry GP, Bamber JC, Armstrong CG, Miller NR, Barbone PE. Ultrasound Med Biol; 2006 Apr; 32(4):547-67. PubMed ID: 16616601 [Abstract] [Full Text] [Related]