These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms. Bergevin C, Manley GA, Köppl C. Proc Natl Acad Sci U S A; 2015 Mar 17; 112(11):3362-7. PubMed ID: 25737537 [Abstract] [Full Text] [Related]
6. Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves. Shera CA, Cooper NP. J Acoust Soc Am; 2013 Apr 17; 133(4):2224-39. PubMed ID: 23556591 [Abstract] [Full Text] [Related]
7. Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. Siegel JH, Cerka AJ, Recio-Spinoso A, Temchin AN, van Dijk P, Ruggero MA. J Acoust Soc Am; 2005 Oct 17; 118(4):2434-43. PubMed ID: 16266165 [Abstract] [Full Text] [Related]
8. Tectorial membrane morphological variation: effects upon stimulus frequency otoacoustic emissions. Bergevin C, Velenovsky DS, Bonine KE. Biophys J; 2010 Aug 09; 99(4):1064-72. PubMed ID: 20712989 [Abstract] [Full Text] [Related]
9. Comparison of otoacoustic emissions within gecko subfamilies: morphological implications for auditory function in lizards. Bergevin C. J Assoc Res Otolaryngol; 2011 Apr 09; 12(2):203-17. PubMed ID: 21136278 [Abstract] [Full Text] [Related]
12. Otoacoustic emissions in humans, birds, lizards, and frogs: evidence for multiple generation mechanisms. Bergevin C, Freeman DM, Saunders JC, Shera CA. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jul 09; 194(7):665-83. PubMed ID: 18500528 [Abstract] [Full Text] [Related]
13. Interrelationships between spontaneous and low-level stimulus-frequency otoacoustic emissions in humans. Bergevin C, Fulcher A, Richmond S, Velenovsky D, Lee J. Hear Res; 2012 Mar 09; 285(1-2):20-8. PubMed ID: 22509533 [Abstract] [Full Text] [Related]
14. Otoacoustic estimation of cochlear tuning: validation in the chinchilla. Shera CA, Guinan JJ, Oxenham AJ. J Assoc Res Otolaryngol; 2010 Sep 09; 11(3):343-65. PubMed ID: 20440634 [Abstract] [Full Text] [Related]
15. Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing. Kalluri R, Shera CA. J Acoust Soc Am; 2007 Dec 09; 122(6):3562-75. PubMed ID: 18247764 [Abstract] [Full Text] [Related]
16. Modeling the characteristics of spontaneous otoacoustic emissions in lizards. Wit HP, Manley GA, van Dijk P. Hear Res; 2020 Jan 09; 385():107840. PubMed ID: 31760263 [Abstract] [Full Text] [Related]
17. Frequency clustering in spontaneous otoacoustic emissions from a lizard's ear. Vilfan A, Duke T. Biophys J; 2008 Nov 15; 95(10):4622-30. PubMed ID: 18689448 [Abstract] [Full Text] [Related]
18. The Spatial Origins of Cochlear Amplification Assessed by Stimulus-Frequency Otoacoustic Emissions. Goodman SS, Lee C, Guinan JJ, Lichtenhan JT. Biophys J; 2020 Mar 10; 118(5):1183-1195. PubMed ID: 31968228 [Abstract] [Full Text] [Related]
19. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays. Bhagat SP, Kilgore C. Neurosci Lett; 2014 Jan 24; 559():132-5. PubMed ID: 24333175 [Abstract] [Full Text] [Related]
20. Nonlinear reflection as a cause of the short-latency component in stimulus-frequency otoacoustic emissions simulated by the methods of compression and suppression. Vencovský V, Vetešník A, Gummer AW. J Acoust Soc Am; 2020 Jun 24; 147(6):3992. PubMed ID: 32611132 [Abstract] [Full Text] [Related] Page: [Next] [New Search]