These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
206 related items for PubMed ID: 20371269
1. Juxtacellular labeling of tonically active neurons and phasically active neurons in the rat striatum. Inokawa H, Yamada H, Matsumoto N, Muranishi M, Kimura M. Neuroscience; 2010 Jun 30; 168(2):395-404. PubMed ID: 20371269 [Abstract] [Full Text] [Related]
2. Cholinergic and GABAergic interneurons in the striatum. Kawaguchi Y, Aosaki T, Kubota Y. Nihon Shinkei Seishin Yakurigaku Zasshi; 1997 Apr 30; 17(2):87-90. PubMed ID: 9201728 [Abstract] [Full Text] [Related]
3. Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: a correlated light and electron microscopic study of cholinergic neurons and synapses. Phelps PE, Houser CR, Vaughn JE. J Comp Neurol; 1985 Aug 15; 238(3):286-307. PubMed ID: 4044917 [Abstract] [Full Text] [Related]
4. Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs. Plotkin JL, Wu N, Chesselet MF, Levine MS. Eur J Neurosci; 2005 Sep 15; 22(5):1097-108. PubMed ID: 16176351 [Abstract] [Full Text] [Related]
5. Parvalbumin-containing GABAergic interneurons in the rat neostriatum. Cowan RL, Wilson CJ, Emson PC, Heizmann CW. J Comp Neurol; 1990 Dec 08; 302(2):197-205. PubMed ID: 2289971 [Abstract] [Full Text] [Related]
6. The corticostriatal input to giant aspiny interneurons in the rat: a candidate pathway for synchronising the response to reward-related cues. Reynolds JN, Wickens JR. Brain Res; 2004 Jun 11; 1011(1):115-28. PubMed ID: 15140651 [Abstract] [Full Text] [Related]
7. Neurogenesis in the mammalian neostriatum and nucleus accumbens: parvalbumin-immunoreactive GABAergic interneurons. Sadikot AF, Sasseville R. J Comp Neurol; 1997 Dec 15; 389(2):193-211. PubMed ID: 9416916 [Abstract] [Full Text] [Related]
8. Chemical phenotype of calretinin interneurons in the human striatum. Cicchetti F, Beach TG, Parent A. Synapse; 1998 Nov 15; 30(3):284-97. PubMed ID: 9776132 [Abstract] [Full Text] [Related]
9. Identification and characterization of striatal cell subtypes using in vivo intracellular recording and dye-labeling in rats: III. Morphological correlates and compartmental localization. Onn SP, Berger TW, Grace AA. Synapse; 1994 Mar 15; 16(3):231-54. PubMed ID: 8197584 [Abstract] [Full Text] [Related]
10. Organotypic slice cultures of the rat striatum--I. A histochemical and immunocytochemical study of acetylcholinesterase, choline acetyltransferase, glutamate decarboxylase and GABA. Ostergaard K. Neuroscience; 1993 Apr 15; 53(3):679-93. PubMed ID: 8487950 [Abstract] [Full Text] [Related]
11. Distribution of GABAergic neurons in the striatum of amygdala-kindled rats: an immunohistochemical and in situ hybridization study. Löscher W, Schirmer M, Freichel C, Gernert M. Brain Res; 2006 Apr 14; 1083(1):50-60. PubMed ID: 16545783 [Abstract] [Full Text] [Related]
12. GABAergic septal and serotonergic median raphe afferents preferentially innervate inhibitory interneurons in the hippocampus and dentate gyrus. Freund TF. Epilepsy Res Suppl; 1992 Apr 14; 7():79-91. PubMed ID: 1361333 [Abstract] [Full Text] [Related]
13. Immunostaining for substance P receptor labels GABAergic cells with distinct termination patterns in the hippocampus. Acsády L, Katona I, Gulyás AI, Shigemoto R, Freund TF. J Comp Neurol; 1997 Feb 17; 378(3):320-36. PubMed ID: 9034894 [Abstract] [Full Text] [Related]
14. Subpopulations of striatal interneurons can be distinguished on the basis of neurotrophic factor expression. Bizon JL, Lauterborn JC, Gall CM. J Comp Neurol; 1999 May 31; 408(2):283-98. PubMed ID: 10333275 [Abstract] [Full Text] [Related]
15. Neurogenesis and stereological morphometry of calretinin-immunoreactive GABAergic interneurons of the neostriatum. Rymar VV, Sasseville R, Luk KC, Sadikot AF. J Comp Neurol; 2004 Feb 09; 469(3):325-39. PubMed ID: 14730585 [Abstract] [Full Text] [Related]
16. A dopamine-acetylcholine cascade: simulating learned and lesion-induced behavior of striatal cholinergic interneurons. Tan CO, Bullock D. J Neurophysiol; 2008 Oct 09; 100(4):2409-21. PubMed ID: 18715897 [Abstract] [Full Text] [Related]
17. Morphological features of neurons containing calcium-binding proteins in the human striatum. Prensa L, Giménez-Amaya JM, Parent A. J Comp Neurol; 1998 Jan 26; 390(4):552-63. PubMed ID: 9450535 [Abstract] [Full Text] [Related]
18. Evidence for GABAergic interneurons in the red nucleus of the painted turtle. Keifer J, Vyas D, Houk JC, Berrebi AS, Mugnaini E. Synapse; 1992 Jul 26; 11(3):197-213. PubMed ID: 1636150 [Abstract] [Full Text] [Related]
19. Functional and ultrastructural analysis of group I mGluR in striatal fast-spiking interneurons. Bonsi P, Sciamanna G, Mitrano DA, Cuomo D, Bernardi G, Platania P, Smith Y, Pisani A. Eur J Neurosci; 2007 Mar 26; 25(5):1319-31. PubMed ID: 17425558 [Abstract] [Full Text] [Related]
20. Organization of the septal region in the rat brain: cholinergic-GABAergic interconnections and the termination of hippocampo-septal fibers. Leranth C, Frotscher M. J Comp Neurol; 1989 Nov 08; 289(2):304-14. PubMed ID: 2808769 [Abstract] [Full Text] [Related] Page: [Next] [New Search]