These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


583 related items for PubMed ID: 20372693

  • 1. Design, synthesis and biological application of chemical probes for bio-imaging.
    Kikuchi K.
    Chem Soc Rev; 2010 Jun; 39(6):2048-53. PubMed ID: 20372693
    [Abstract] [Full Text] [Related]

  • 2. Design, synthesis, and biological application of fluorescent sensor molecules for cellular imaging.
    Kikuchi K.
    Adv Biochem Eng Biotechnol; 2010 Jun; 119():63-78. PubMed ID: 19649586
    [Abstract] [Full Text] [Related]

  • 3. A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral.
    Takakusa H, Kikuchi K, Urano Y, Kojima H, Nagano T.
    Chemistry; 2003 Apr 04; 9(7):1479-85. PubMed ID: 12658644
    [Abstract] [Full Text] [Related]

  • 4. Efficient fluorescence resonance energy transfer-based ratiometric fluorescent cellular imaging probe for Zn(2+) using a rhodamine spirolactam as a trigger.
    Han ZX, Zhang XB, Li Z, Gong YJ, Wu XY, Jin Z, He CM, Jian LX, Zhang J, Shen GL, Yu RQ.
    Anal Chem; 2010 Apr 15; 82(8):3108-13. PubMed ID: 20334436
    [Abstract] [Full Text] [Related]

  • 5. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
    Yuan L, Lin W, Zheng K, Zhu S.
    Acc Chem Res; 2013 Jul 16; 46(7):1462-73. PubMed ID: 23419062
    [Abstract] [Full Text] [Related]

  • 6. Visible light excitable Zn2+ fluorescent sensor derived from an intramolecular charge transfer fluorophore and its in vitro and in vivo application.
    Qian F, Zhang C, Zhang Y, He W, Gao X, Hu P, Guo Z.
    J Am Chem Soc; 2009 Feb 04; 131(4):1460-8. PubMed ID: 19138071
    [Abstract] [Full Text] [Related]

  • 7. Development of FRET-based dual-excitation ratiometric fluorescent pH probes and their photocaged derivatives.
    Yuan L, Lin W, Cao Z, Wang J, Chen B.
    Chemistry; 2012 Jan 23; 18(4):1247-55. PubMed ID: 22213439
    [Abstract] [Full Text] [Related]

  • 8. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C, van Royen ME, Vermeulen W, Houtsmuller AB.
    J Microsc; 2008 Jul 23; 231(Pt 1):97-104. PubMed ID: 18638193
    [Abstract] [Full Text] [Related]

  • 9. Zinc sensing for cellular application.
    Kikuchi K, Komatsu K, Nagano T.
    Curr Opin Chem Biol; 2004 Apr 23; 8(2):182-91. PubMed ID: 15062780
    [Abstract] [Full Text] [Related]

  • 10. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L, Olson DP, Wu X, Karpova TS, McNally JG, Lipsky PE.
    Cytometry A; 2003 Oct 23; 55(2):71-85. PubMed ID: 14505312
    [Abstract] [Full Text] [Related]

  • 11. Monitoring spatio-temporal regulation of Ras and Rho GTPase with GFP-based FRET probes.
    Nakamura T, Aoki K, Matsuda M.
    Methods; 2005 Oct 23; 37(2):146-53. PubMed ID: 16288890
    [Abstract] [Full Text] [Related]

  • 12. Resonance energy transfer between green fluorescent protein variants: complexities revealed with myosin fusion proteins.
    Zeng W, Seward HE, Málnási-Csizmadia A, Wakelin S, Woolley RJ, Cheema GS, Basran J, Patel TR, Rowe AJ, Bagshaw CR.
    Biochemistry; 2006 Sep 05; 45(35):10482-91. PubMed ID: 16939200
    [Abstract] [Full Text] [Related]

  • 13. Photocontrollable analyte-responsive fluorescent probes: a photocaged copper-responsive fluorescence turn-on probe.
    Yuan L, Lin W, Cao Z, Long L, Song J.
    Chemistry; 2011 Jan 10; 17(2):689-96. PubMed ID: 21207590
    [Abstract] [Full Text] [Related]

  • 14. Through bond energy transfer: a convenient and universal strategy toward efficient ratiometric fluorescent probe for bioimaging applications.
    Gong YJ, Zhang XB, Zhang CC, Luo AL, Fu T, Tan W, Shen GL, Yu RQ.
    Anal Chem; 2012 Dec 18; 84(24):10777-84. PubMed ID: 23171399
    [Abstract] [Full Text] [Related]

  • 15. Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer.
    Miyawaki A.
    Annu Rev Biochem; 2011 Dec 18; 80():357-73. PubMed ID: 21529159
    [Abstract] [Full Text] [Related]

  • 16. A simple FRET-based modular design for diagnostic probes.
    Redy O, Kisin-Finfer E, Sella E, Shabat D.
    Org Biomol Chem; 2012 Jan 28; 10(4):710-5. PubMed ID: 22159494
    [Abstract] [Full Text] [Related]

  • 17. Reversible dimerization of Aequorea victoria fluorescent proteins increases the dynamic range of FRET-based indicators.
    Kotera I, Iwasaki T, Imamura H, Noji H, Nagai T.
    ACS Chem Biol; 2010 Feb 19; 5(2):215-22. PubMed ID: 20047338
    [Abstract] [Full Text] [Related]

  • 18. An in vivo spectral multiplexing approach for the cooperative imaging of different disease-related biomarkers with near-infrared fluorescent forster resonance energy transfer probes.
    Busch C, Schröter T, Grabolle M, Wenzel M, Kempe H, Kaiser WA, Resch-Genger U, Hilger I.
    J Nucl Med; 2012 Apr 19; 53(4):638-46. PubMed ID: 22407968
    [Abstract] [Full Text] [Related]

  • 19. Bright fluorescent chemosensor platforms for imaging endogenous pools of neuronal zinc.
    Chang CJ, Nolan EM, Jaworski J, Burdette SC, Sheng M, Lippard SJ.
    Chem Biol; 2004 Feb 19; 11(2):203-10. PubMed ID: 15123282
    [Abstract] [Full Text] [Related]

  • 20. Fluorescent detection of hypochlorous acid from turn-on to FRET-based ratiometry by a HOCl-mediated cyclization reaction.
    Yuan L, Lin W, Xie Y, Chen B, Song J.
    Chemistry; 2012 Feb 27; 18(9):2700-6. PubMed ID: 22271383
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 30.