These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
400 related items for PubMed ID: 20373748
1. Ion-specific effects under confinement: the role of interfacial water. Argyris D, Cole DR, Striolo A. ACS Nano; 2010 Apr 27; 4(4):2035-42. PubMed ID: 20373748 [Abstract] [Full Text] [Related]
2. Aqueous NaCl and CsCl solutions confined in crystalline slit-shaped silica nanopores of varying degree of protonation. Ho TA, Argyris D, Cole DR, Striolo A. Langmuir; 2012 Jan 17; 28(2):1256-66. PubMed ID: 22148873 [Abstract] [Full Text] [Related]
3. Ion exclusion and electrokinetic effects resulting from electro-osmotic flow of salt solutions in charged silica nanopores. Haria NR, Lorenz CD. Phys Chem Chem Phys; 2012 May 07; 14(17):5935-44. PubMed ID: 22441317 [Abstract] [Full Text] [Related]
4. Anomalous dynamics of water confined in MCM-41 at different hydrations. Gallo P, Rovere M, Chen SH. J Phys Condens Matter; 2010 Jul 21; 22(28):284102. PubMed ID: 21399274 [Abstract] [Full Text] [Related]
5. The water-amorphous silica interface: analysis of the Stern layer and surface conduction. Zhang H, Hassanali AA, Shin YK, Knight C, Singer SJ. J Chem Phys; 2011 Jan 14; 134(2):024705. PubMed ID: 21241144 [Abstract] [Full Text] [Related]
12. Water adsorption in ion-bearing nanopores. Lakatos G, Patey GN. J Chem Phys; 2007 Jan 14; 126(2):024703. PubMed ID: 17228962 [Abstract] [Full Text] [Related]
13. Electrosorption selectivity of ions from mixtures of electrolytes inside nanopores. Hou CH, Taboada-Serrano P, Yiacoumi S, Tsouris C. J Chem Phys; 2008 Dec 14; 129(22):224703. PubMed ID: 19071935 [Abstract] [Full Text] [Related]
14. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM. Adv Colloid Interface Sci; 2004 Nov 29; 111(1-2):3-27. PubMed ID: 15571660 [Abstract] [Full Text] [Related]
15. Molecular simulation of ion transport in silica nanopores. Shirono K, Tatsumi N, Daiguji H. J Phys Chem B; 2009 Jan 29; 113(4):1041-7. PubMed ID: 19123824 [Abstract] [Full Text] [Related]
16. Ion-size effect within the aqueous solution interface at the Pt(111) surface: molecular dynamics studies. Godec A, Gaberšček M, Jamnik J, Janežič D, Merzel F. Phys Chem Chem Phys; 2010 Nov 07; 12(41):13566-73. PubMed ID: 20856959 [Abstract] [Full Text] [Related]
17. Hierarchical multiscale simulation of electrokinetic transport in silica nanochannels at the point of zero charge. Joseph S, Aluru NR. Langmuir; 2006 Oct 10; 22(21):9041-51. PubMed ID: 17014152 [Abstract] [Full Text] [Related]
18. Ionic force field optimization based on single-ion and ion-pair solvation properties. Fyta M, Kalcher I, Dzubiella J, Vrbka L, Netz RR. J Chem Phys; 2010 Jan 14; 132(2):024911. PubMed ID: 20095713 [Abstract] [Full Text] [Related]
19. Effect of cation size and charge on the interaction between silica surfaces in 1:1, 2:1, and 3:1 aqueous electrolytes. Dishon M, Zohar O, Sivan U. Langmuir; 2011 Nov 01; 27(21):12977-84. PubMed ID: 21877732 [Abstract] [Full Text] [Related]
20. Modeling the selective partitioning of cations into negatively charged nanopores in water. Yang L, Garde S. J Chem Phys; 2007 Feb 28; 126(8):084706. PubMed ID: 17343468 [Abstract] [Full Text] [Related] Page: [Next] [New Search]