These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 2037590

  • 21. Expression of rat renal sodium/phosphate cotransporter in Xenopus laevis oocytes.
    al-Mahrouq HA, Kempson SA.
    Biochim Biophys Acta; 1992 Feb 17; 1104(1):83-6. PubMed ID: 1532329
    [Abstract] [Full Text] [Related]

  • 22. Chinese hamster ovary mRNA-dependent, Na(+)-independent L-leucine transport in Xenopus laevis oocytes.
    Su TZ, Logsdon CD, Oxender DL.
    Mol Cell Biol; 1992 Dec 17; 12(12):5281-7. PubMed ID: 1360143
    [Abstract] [Full Text] [Related]

  • 23. Identification of a novel, sodium-dependent, reduced glutathione transporter in the rat lens epithelium.
    Kannan R, Yi JR, Tang D, Zlokovic BV, Kaplowitz N.
    Invest Ophthalmol Vis Sci; 1996 Oct 17; 37(11):2269-75. PubMed ID: 8843923
    [Abstract] [Full Text] [Related]

  • 24. Expression of renal Na(+)-Ca2+ exchange activity in Xenopus laevis oocytes.
    Milovanovic S, Frindt G, Tate SS, Windhager EE.
    Am J Physiol; 1991 Aug 17; 261(2 Pt 2):F207-12. PubMed ID: 1715130
    [Abstract] [Full Text] [Related]

  • 25. Expression of the mammalian Na+-independent L system amino acid transporter in Xenopus laevis oocytes.
    Tate SS, Urade R, Getchell TV, Udenfriend S.
    Arch Biochem Biophys; 1989 Dec 17; 275(2):591-6. PubMed ID: 2480748
    [Abstract] [Full Text] [Related]

  • 26. Expression of a rat renal sodium-dependent dicarboxylate transporter in Xenopus oocytes.
    Steffgen J, Kienle S, Scheyerl F, Franz HE.
    Biochem J; 1994 Jan 01; 297 ( Pt 1)(Pt 1):35-9. PubMed ID: 8280108
    [Abstract] [Full Text] [Related]

  • 27. Expression of Na(+)-independent amino acid transport in Xenopus laevis oocytes by injection of rabbit kidney cortex mRNA.
    Bertran J, Werner A, Stange G, Markovich D, Biber J, Testar X, Zorzano A, Palacin M, Murer H.
    Biochem J; 1992 Feb 01; 281 ( Pt 3)(Pt 3):717-23. PubMed ID: 1536650
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Functional expression of the rabbit intestinal Na+/L-proline cotransporter (IMINO system) in Xenopus laevis oocytes.
    Urdaneta E, Barber A, Wright EM, Lostao MP.
    J Physiol Biochem; 1998 Sep 01; 54(3):155-60. PubMed ID: 10217212
    [Abstract] [Full Text] [Related]

  • 31. Myo-inositol and betaine transporters regulated by tonicity are basolateral in MDCK cells.
    Yamauchi A, Kwon HM, Uchida S, Preston AS, Handler JS.
    Am J Physiol; 1991 Jul 01; 261(1 Pt 2):F197-202. PubMed ID: 1858900
    [Abstract] [Full Text] [Related]

  • 32. Relative contributions of Na+-dependent phosphate co-transporters to phosphate transport in mouse kidney: RNase H-mediated hybrid depletion analysis.
    Miyamoto K, Segawa H, Morita K, Nii T, Tatsumi S, Taketani Y, Takeda E.
    Biochem J; 1997 Nov 01; 327 ( Pt 3)(Pt 3):735-9. PubMed ID: 9581550
    [Abstract] [Full Text] [Related]

  • 33. Expression of renal organic cation transporter in Xenopus laevis oocytes.
    Hori R, Hirai M, Katsura T, Takano M, Yasuhara M, Kaneko S, Satoh M.
    Biochem J; 1992 Apr 15; 283 ( Pt 2)(Pt 2):409-11. PubMed ID: 1374230
    [Abstract] [Full Text] [Related]

  • 34. Activation of osmotically-activated potassium transporters after injection of mRNA from A6 cells in Xenopus oocytes.
    Ratcliff FG, Ehrenfeld J.
    Biochim Biophys Acta; 1994 Mar 23; 1190(2):248-56. PubMed ID: 8142423
    [Abstract] [Full Text] [Related]

  • 35. Expression of the rabbit intestinal N2 Na+/nucleoside transporter in Xenopus laevis oocytes.
    Jarvis SM, Griffith DA.
    Biochem J; 1991 Sep 01; 278 ( Pt 2)(Pt 2):605-7. PubMed ID: 1898349
    [Abstract] [Full Text] [Related]

  • 36. Characterization of the endogenous carnitine transport and expression of a rat renal Na(+)-dependent carnitine transport system in Xenopus laevis oocytes.
    Berardi S, Hagenbuch B, Carafoli E, Krähenbühl S.
    Biochem J; 1995 Jul 15; 309 ( Pt 2)(Pt 2):389-93. PubMed ID: 7626001
    [Abstract] [Full Text] [Related]

  • 37. Evidence for the existence of a sodium-dependent glutathione (GSH) transporter. Expression of bovine brain capillary mRNA and size fractions in Xenopus laevis oocytes and dissociation from gamma-glutamyltranspeptidase and facilitative GSH transporters.
    Kannan R, Yi JR, Tang D, Li Y, Zlokovic BV, Kaplowitz N.
    J Biol Chem; 1996 Apr 19; 271(16):9754-8. PubMed ID: 8621654
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Involvement of rBAT in Na(+)-dependent and -independent transport of the neurotransmitter candidate L-DOPA in Xenopus laevis oocytes injected with rabbit small intestinal epithelium poly A(+) RNA.
    Ishiia H, Sasaki Y, Goshima Y, Kanai Y, Endou H, Ayusawa D, Ono H, Miyamae T, Misu Y.
    Biochim Biophys Acta; 2000 Jun 01; 1466(1-2):61-70. PubMed ID: 10825431
    [Abstract] [Full Text] [Related]

  • 40. Poly(A)+ RNA from rabbit intestinal mucosa induces b0,+ and y+ amino acid transport activities in Xenopus laevis oocytes.
    Magagnin S, Bertran J, Werner A, Markovich D, Biber J, Palacín M, Murer H.
    J Biol Chem; 1992 Aug 05; 267(22):15384-90. PubMed ID: 1379228
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.