These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
196 related items for PubMed ID: 20380459
1. Transition-metal ions in zeolites: coordination and activation of oxygen. Smeets PJ, Woertink JS, Sels BF, Solomon EI, Schoonheydt RA. Inorg Chem; 2010 Apr 19; 49(8):3573-83. PubMed ID: 20380459 [Abstract] [Full Text] [Related]
2. Stable and Uniform Extraframework Cations in Faujasite Zeolites. Li W, Chai Y, Wu G, Li L. J Phys Chem Lett; 2022 Dec 15; 13(49):11419-11429. PubMed ID: 36468947 [Abstract] [Full Text] [Related]
3. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI. Proc Natl Acad Sci U S A; 2009 Nov 10; 106(45):18908-13. PubMed ID: 19864626 [Abstract] [Full Text] [Related]
4. Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes. Snyder BER, Bols ML, Schoonheydt RA, Sels BF, Solomon EI. Chem Rev; 2018 Mar 14; 118(5):2718-2768. PubMed ID: 29256242 [Abstract] [Full Text] [Related]
5. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts. Mahyuddin MH, Shiota Y, Staykov A, Yoshizawa K. Acc Chem Res; 2018 Oct 16; 51(10):2382-2390. PubMed ID: 30207444 [Abstract] [Full Text] [Related]
6. Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites. Dinh KT, Sullivan MM, Narsimhan K, Serna P, Meyer RJ, Dincă M, Román-Leshkov Y. J Am Chem Soc; 2019 Jul 24; 141(29):11641-11650. PubMed ID: 31306002 [Abstract] [Full Text] [Related]
7. Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods. Gabrienko AA, Yashnik SA, Kolganov AA, Sheveleva AM, Arzumanov SS, Fedin MV, Tuna F, Stepanov AG. Inorg Chem; 2020 Feb 03; 59(3):2037-2050. PubMed ID: 31971794 [Abstract] [Full Text] [Related]
8. Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane. Snyder BER, Böttger LH, Bols ML, Yan JJ, Rhoda HM, Jacobs AB, Hu MY, Zhao J, Alp EE, Hedman B, Hodgson KO, Schoonheydt RA, Sels BF, Solomon EI. Proc Natl Acad Sci U S A; 2018 May 01; 115(18):4565-4570. PubMed ID: 29610304 [Abstract] [Full Text] [Related]
9. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction. Narsimhan K, Michaelis VK, Mathies G, Gunther WR, Griffin RG, Román-Leshkov Y. J Am Chem Soc; 2015 Feb 11; 137(5):1825-32. PubMed ID: 25562431 [Abstract] [Full Text] [Related]
10. Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5. Smeets PJ, Hadt RG, Woertink JS, Vanelderen P, Schoonheydt RA, Sels BF, Solomon EI. J Am Chem Soc; 2010 Oct 27; 132(42):14736-8. PubMed ID: 20923156 [Abstract] [Full Text] [Related]
11. Catalytic effect of transition metals on microwave-induced degradation of atrazine in mineral micropores. Hu E, Cheng H. Water Res; 2014 Jun 15; 57():8-19. PubMed ID: 24698722 [Abstract] [Full Text] [Related]
12. Enhancement of alpha-oxygen formation and N2O decomposition on Fe/ZSM-5 catalysts by extraframework Al. Sun K, Zhang H, Xia H, Lian Y, Li Y, Feng Z, Ying P, Li C. Chem Commun (Camb); 2004 Nov 07; (21):2480-1. PubMed ID: 15514825 [Abstract] [Full Text] [Related]
13. Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts. Zecchina A, Rivallan M, Berlier G, Lamberti C, Ricchiardi G. Phys Chem Chem Phys; 2007 Jul 21; 9(27):3483-99. PubMed ID: 17612716 [Abstract] [Full Text] [Related]
14. Mechanism of selective benzene hydroxylation catalyzed by iron-containing zeolites. Snyder BER, Bols ML, Rhoda HM, Vanelderen P, Böttger LH, Braun A, Yan JJ, Hadt RG, Babicz JT, Hu MY, Zhao J, Alp EE, Hedman B, Hodgson KO, Schoonheydt RA, Sels BF, Solomon EI. Proc Natl Acad Sci U S A; 2018 Nov 27; 115(48):12124-12129. PubMed ID: 30429333 [Abstract] [Full Text] [Related]
15. Spectroscopic and XRD characterisation of zeolite catalysts active for the oxidative methylation of benzene with methane. Adebajo MO, Long MA, Frost RL. Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar 27; 60(4):791-9. PubMed ID: 15036089 [Abstract] [Full Text] [Related]
16. Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites. Paolucci C, Parekh AA, Khurana I, Di Iorio JR, Li H, Albarracin Caballero JD, Shih AJ, Anggara T, Delgass WN, Miller JT, Ribeiro FH, Gounder R, Schneider WF. J Am Chem Soc; 2016 May 11; 138(18):6028-48. PubMed ID: 27070199 [Abstract] [Full Text] [Related]
17. Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA. J Am Chem Soc; 2005 Feb 09; 127(5):1394-5. PubMed ID: 15686370 [Abstract] [Full Text] [Related]
18. Fe-ZSM-5 zeolite catalyst for heterogeneous Fenton oxidation of 1,4-dioxane: effect of Si/Al ratios and contributions of reactive oxygen species. Tian K, Pan J, Liu Y, Wang P, Zhong M, Dong Y, Wang M. Environ Sci Pollut Res Int; 2024 Mar 09; 31(13):19738-19752. PubMed ID: 38363503 [Abstract] [Full Text] [Related]
19. Synthetic mononuclear nonheme iron-oxygen intermediates. Nam W. Acc Chem Res; 2015 Aug 18; 48(8):2415-23. PubMed ID: 26203519 [Abstract] [Full Text] [Related]
20. Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation. Vanelderen P, Snyder BE, Tsai ML, Hadt RG, Vancauwenbergh J, Coussens O, Schoonheydt RA, Sels BF, Solomon EI. J Am Chem Soc; 2015 May 20; 137(19):6383-92. PubMed ID: 25914019 [Abstract] [Full Text] [Related] Page: [Next] [New Search]