These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
162 related items for PubMed ID: 20384297
1. Electrochemical approach for detection of extracellular oxygen released from erythrocytes based on graphene film integrated with laccase and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). Wu X, Hu Y, Jin J, Zhou N, Wu P, Zhang H, Cai C. Anal Chem; 2010 May 01; 82(9):3588-96. PubMed ID: 20384297 [Abstract] [Full Text] [Related]
3. ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen. Karnicka K, Miecznikowski K, Kowalewska B, Skunik M, Opallo M, Rogalski J, Schuhmann W, Kulesza PJ. Anal Chem; 2008 Oct 01; 80(19):7643-8. PubMed ID: 18729478 [Abstract] [Full Text] [Related]
4. Electrochemical and AFM characterization on gold and carbon electrodes of a high redox potential laccase from Fusarium proliferatum. González Arzola K, Gimeno Y, Arévalo MC, Falcón MA, Hernández Creus A. Bioelectrochemistry; 2010 Aug 01; 79(1):17-24. PubMed ID: 19854115 [Abstract] [Full Text] [Related]
5. Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen electrodes. Sadowska K, Stolarczyk K, Biernat JF, Roberts KP, Rogalski J, Bilewicz R. Bioelectrochemistry; 2010 Nov 01; 80(1):73-80. PubMed ID: 20609634 [Abstract] [Full Text] [Related]
6. Laccase immobilization in redox active layered double hydroxides: a reagentless amperometric biosensor. Mousty C, Vieille L, Cosnier S. Biosens Bioelectron; 2007 Mar 15; 22(8):1733-8. PubMed ID: 17023155 [Abstract] [Full Text] [Related]
7. Graphene enhanced transformation of lignin in laccase-ABTS system by accelerating electron transfer. Pan Y, Ma H, Huang L, Huang J, Liu Y, Huang Z, Li W, Yang J. Enzyme Microb Technol; 2018 Dec 15; 119():17-23. PubMed ID: 30243382 [Abstract] [Full Text] [Related]
8. Graphene Facilitated Removal of Labetalol in Laccase-ABTS System: Reaction Efficiency, Pathways and Mechanism. Dong S, Xiao H, Huang Q, Zhang J, Mao L, Gao S. Sci Rep; 2016 Feb 19; 6():21396. PubMed ID: 26891761 [Abstract] [Full Text] [Related]
9. Three-dimensional graphene networks as a new substrate for immobilization of laccase and dopamine and its application in glucose/O2 biofuel cell. Zhang Y, Chu M, Yang L, Tan Y, Deng W, Ma M, Su X, Xie Q. ACS Appl Mater Interfaces; 2014 Aug 13; 6(15):12808-14. PubMed ID: 25019407 [Abstract] [Full Text] [Related]
10. Adsorption of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) on multiwalled carbon nanotubes-silicate film: application to bioelectrocatalytic dioxygen reduction. Jönsson M, Szot K, Niedziolka J, Rogalski J, Karnicka K, Kulesza P, Opallo M. J Nanosci Nanotechnol; 2009 Apr 13; 9(4):2346-52. PubMed ID: 19437974 [Abstract] [Full Text] [Related]
11. Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. Jeon JR, Murugesan K, Kim YM, Kim EJ, Chang YS. Appl Microbiol Biotechnol; 2008 Dec 13; 81(4):783-90. PubMed ID: 18987855 [Abstract] [Full Text] [Related]
12. Electrochemical catalysis and thermal stability characterization of laccase-carbon nanotubes-ionic liquid nanocomposite modified graphite electrode. Liu Y, Huang L, Dong S. Biosens Bioelectron; 2007 Aug 30; 23(1):35-41. PubMed ID: 17459687 [Abstract] [Full Text] [Related]
13. Stable ABTS Immobilized in the MIL-100(Fe) Metal-Organic Framework as an Efficient Mediator for Laccase-Catalyzed Decolorization. Liu Y, Geng Y, Yan M, Huang J. Molecules; 2017 Jun 02; 22(6):. PubMed ID: 28574450 [Abstract] [Full Text] [Related]
14. Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film. Tan Y, Deng W, Ge B, Xie Q, Huang J, Yao S. Biosens Bioelectron; 2009 Mar 15; 24(7):2225-31. PubMed ID: 19153037 [Abstract] [Full Text] [Related]
15. Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: diffusional limitation investigation. Pang R, Li M, Zhang C. Talanta; 2015 Jan 15; 131():38-45. PubMed ID: 25281070 [Abstract] [Full Text] [Related]
16. Co-immobilization of laccase and ABTS onto novel dual-functionalized cellulose beads for highly improved biodegradation of indole. Yaohua G, Ping X, Feng J, Keren S. J Hazard Mater; 2019 Mar 05; 365():118-124. PubMed ID: 30412808 [Abstract] [Full Text] [Related]
17. Oxidation of a laccase mediator ABTS as studied by ESI-FTICR mass spectrometry. Marjasvaara A, Jänis J, Vainiotalo P. J Mass Spectrom; 2008 Apr 05; 43(4):470-7. PubMed ID: 17975855 [Abstract] [Full Text] [Related]
18. Investigation of biosensor signal bioamplification: comparison of direct electrochemistry phenomena of individual Laccase, and dual Laccase-Tyrosinase copper enzymes, at a Sonogel-Carbon electrode. ElKaoutit M, Naranjo-Rodriguez I, Temsamani KR, Domínguez M, Hidalgo-Hidalgo de Cisneros JL. Talanta; 2008 Jun 15; 75(5):1348-55. PubMed ID: 18585223 [Abstract] [Full Text] [Related]
19. Radical Scavenging by Acetone: A New Perspective to Understand Laccase/ABTS Inactivation and to Recover Redox Mediator. Liu H, Zhou P, Wu X, Sun J, Chen S. Molecules; 2015 Nov 04; 20(11):19907-13. PubMed ID: 26556325 [Abstract] [Full Text] [Related]
20. Redox-active thionine-graphene oxide hybrid nanosheet: one-pot, rapid synthesis, and application as a sensing platform for uric acid. Sun Z, Fu H, Deng L, Wang J. Anal Chim Acta; 2013 Jan 25; 761():84-91. PubMed ID: 23312318 [Abstract] [Full Text] [Related] Page: [Next] [New Search]