These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
323 related items for PubMed ID: 20384328
21. Structural and energetic analysis on the complexes of clinically isolated subtype C HIV-1 proteases and approved inhibitors by molecular dynamics simulation. Matsuyama S, Aydan A, Ode H, Hata M, Sugiura W, Hoshino T. J Phys Chem B; 2010 Jan 14; 114(1):521-30. PubMed ID: 20055526 [Abstract] [Full Text] [Related]
22. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors. Wittayanarakul K, Hannongbua S, Feig M. J Comput Chem; 2008 Apr 15; 29(5):673-85. PubMed ID: 17849388 [Abstract] [Full Text] [Related]
23. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights. Chetty S, Bhakat S, Martin AJ, Soliman ME. J Biomol Struct Dyn; 2016 Apr 15; 34(1):135-51. PubMed ID: 25671669 [Abstract] [Full Text] [Related]
24. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches. Miyamoto S, Kollman PA. Proteins; 1993 Jul 15; 16(3):226-45. PubMed ID: 8346190 [Abstract] [Full Text] [Related]
25. The impact of active site mutations of South African HIV PR on drug resistance: Insight from molecular dynamics simulations, binding free energy and per-residue footprints. Ahmed SM, Maguire GE, Kruger HG, Govender T. Chem Biol Drug Des; 2014 Apr 15; 83(4):472-81. PubMed ID: 24267738 [Abstract] [Full Text] [Related]
26. Efficient evaluation of binding free energy using continuum electrostatics solvation. Huang D, Caflisch A. J Med Chem; 2004 Nov 04; 47(23):5791-7. PubMed ID: 15509178 [Abstract] [Full Text] [Related]
27. Structural and dynamical properties of different protonated states of mutant HIV-1 protease complexed with the saquinavir inhibitor studied by molecular dynamics simulations. Aruksakunwong O, Wittayanarakul K, Sompornpisut P, Sanghiran V, Parasuk V, Hannongbua S. J Mol Graph Model; 2006 Nov 04; 25(3):324-32. PubMed ID: 16504560 [Abstract] [Full Text] [Related]
28. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Sham YY, Chu ZT, Tao H, Warshel A. Proteins; 2000 Jun 01; 39(4):393-407. PubMed ID: 10813821 [Abstract] [Full Text] [Related]
29. Molecular dynamic and free energy studies of primary resistance mutations in HIV-1 protease-ritonavir complexes. Aruksakunwong O, Wolschann P, Hannongbua S, Sompornpisut P. J Chem Inf Model; 2006 Jun 01; 46(5):2085-92. PubMed ID: 16995739 [Abstract] [Full Text] [Related]
30. Mutational patterns and correlated amino acid substitutions in the HIV-1 protease after virological failure to nelfinavir- and lopinavir/ritonavir-based treatments. Garriga C, Pérez-Elías MJ, Delgado R, Ruiz L, Nájera R, Pumarola T, Alonso-Socas Mdel M, García-Bujalance S, Menéndez-Arias L, Spanish Group for the Study of Antiretroviral Drug Resistance. J Med Virol; 2007 Nov 01; 79(11):1617-28. PubMed ID: 17854027 [Abstract] [Full Text] [Related]
31. Systematic molecular dynamics, MM-PBSA, and ab initio approaches to the saquinavir resistance mechanism in HIV-1 PR due to 11 double and multiple mutations. Tzoupis H, Leonis G, Avramopoulos A, Mavromoustakos T, Papadopoulos MG. J Phys Chem B; 2014 Aug 14; 118(32):9538-52. PubMed ID: 25036111 [Abstract] [Full Text] [Related]
33. Synergistic inhibition of protease-inhibitor-resistant HIV type 1 by saquinavir in combination with atazanavir or lopinavir. Dam E, Lebel-Binay S, Rochas S, Thibaut L, Faudon JL, Thomas CM, Essioux L, Hill A, Schutz M, Clavel F. Antivir Ther; 2007 Aug 14; 12(3):371-80. PubMed ID: 17591027 [Abstract] [Full Text] [Related]
34. The binding energetics of first- and second-generation HIV-1 protease inhibitors: implications for drug design. Velazquez-Campoy A, Kiso Y, Freire E. Arch Biochem Biophys; 2001 Jun 15; 390(2):169-75. PubMed ID: 11396919 [Abstract] [Full Text] [Related]
35. Absolute free energies of binding of peptide analogs to the HIV-1 protease from molecular dynamics simulations. Bartels C, Widmer A, Ehrhardt C. J Comput Chem; 2005 Sep 15; 26(12):1294-305. PubMed ID: 15981257 [Abstract] [Full Text] [Related]
36. Cyclic urea amides: HIV-1 protease inhibitors with low nanomolar potency against both wild type and protease inhibitor resistant mutants of HIV. Jadhav PK, Ala P, Woerner FJ, Chang CH, Garber SS, Anton ED, Bacheler LT. J Med Chem; 1997 Jan 17; 40(2):181-91. PubMed ID: 9003516 [Abstract] [Full Text] [Related]
37. Using Hierarchical Virtual Screening To Combat Drug Resistance of the HIV-1 Protease. Li N, Ainsworth RI, Ding B, Hou T, Wang W. J Chem Inf Model; 2015 Jul 27; 55(7):1400-12. PubMed ID: 25993532 [Abstract] [Full Text] [Related]
38. Counteracting HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with XV638 and SD146, cyclic urea amides with broad specificities. Ala PJ, Huston EE, Klabe RM, Jadhav PK, Lam PY, Chang CH. Biochemistry; 1998 Oct 27; 37(43):15042-9. PubMed ID: 9790666 [Abstract] [Full Text] [Related]
39. Insights into the mechanism of drug resistance: X-ray structure analysis of G48V/C95F tethered HIV-1 protease dimer/saquinavir complex. Prashar V, Bihani SC, Das A, Rao DR, Hosur MV. Biochem Biophys Res Commun; 2010 Jun 11; 396(4):1018-23. PubMed ID: 20471372 [Abstract] [Full Text] [Related]
40. Crystal structures of a multidrug-resistant human immunodeficiency virus type 1 protease reveal an expanded active-site cavity. Logsdon BC, Vickrey JF, Martin P, Proteasa G, Koepke JI, Terlecky SR, Wawrzak Z, Winters MA, Merigan TC, Kovari LC. J Virol; 2004 Mar 11; 78(6):3123-32. PubMed ID: 14990731 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]