These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


306 related items for PubMed ID: 20387049

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Concepts and approaches towards understanding the cellular redox proteome.
    Ströher E, Dietz KJ.
    Plant Biol (Stuttg); 2006 Jul; 8(4):407-18. PubMed ID: 16906481
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Covalent selection of the thiol proteome on activated thiol sepharose: a robust tool for redox proteomics.
    Hu W, Tedesco S, Faedda R, Petrone G, Cacciola SO, O'Keefe A, Sheehan D.
    Talanta; 2010 Feb 15; 80(4):1569-75. PubMed ID: 20082816
    [Abstract] [Full Text] [Related]

  • 5. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P, Zhang H, Wang H, Xia Y.
    Proteomics; 2014 Mar 15; 14(6):750-62. PubMed ID: 24376095
    [Abstract] [Full Text] [Related]

  • 6. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C, Leichert LI.
    Methods Mol Biol; 2012 Mar 15; 893():387-403. PubMed ID: 22665313
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Neural network-based analysis of thiol proteomics data in identifying potential selenium targets.
    Lee JS, Ma YB, Choi KS, Park SY, Baek SH, Park YM, Zu K, Zhang H, Ip C, Kim YH, Park EM.
    Prep Biochem Biotechnol; 2006 Mar 15; 36(1):37-64. PubMed ID: 16428138
    [Abstract] [Full Text] [Related]

  • 9. Proteomic analysis of redox-dependent changes using cysteine-labeling 2D DIGE.
    Chan HL, Sinclair J, Timms JF.
    Methods Mol Biol; 2012 Mar 15; 854():113-28. PubMed ID: 22311756
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Mapping the cysteine proteome: analysis of redox-sensing thiols.
    Jones DP, Go YM.
    Curr Opin Chem Biol; 2011 Feb 15; 15(1):103-12. PubMed ID: 21216657
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Thiol redox-sensitive seed proteome in dormant and non-dormant hybrid genotypes of wheat.
    Bykova NV, Hoehn B, Rampitsch C, Hu J, Stebbing JA, Knox R.
    Phytochemistry; 2011 Jul 15; 72(10):1162-72. PubMed ID: 21295800
    [Abstract] [Full Text] [Related]

  • 14. Thiol-disulfide redox equilibria of glutathione metaboloma compounds investigated by tandem mass spectrometry.
    Rubino FM, Pitton M, Caneva E, Pappini M, Colombi A.
    Rapid Commun Mass Spectrom; 2008 Dec 15; 22(23):3935-48. PubMed ID: 19003853
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Protein-thiol oxidation, from single proteins to proteome-wide analyses.
    Le Moan N, Tacnet F, Toledano MB.
    Methods Mol Biol; 2008 Dec 15; 476():181-98. PubMed ID: 19157017
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Selection of thiol- and disulfide-containing proteins of Escherichia coli on activated thiol-Sepharose.
    Hu W, Tedesco S, McDonagh B, Bárcena JA, Keane C, Sheehan D.
    Anal Biochem; 2010 Mar 15; 398(2):245-53. PubMed ID: 19903445
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Methods in functional proteomics: two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients, in-gel digestion and identification of proteins by mass spectrometry.
    Bernard KR, Jonscher KR, Resing KA, Ahn NG.
    Methods Mol Biol; 2004 Mar 15; 250():263-82. PubMed ID: 14755094
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.