These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


306 related items for PubMed ID: 20387049

  • 21. Oxidative modification of hepatic mitochondria protein thiols: effect of chronic alcohol consumption.
    Venkatraman A, Landar A, Davis AJ, Ulasova E, Page G, Murphy MP, Darley-Usmar V, Bailey SM.
    Am J Physiol Gastrointest Liver Physiol; 2004 Apr; 286(4):G521-7. PubMed ID: 14670822
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Redox Proteomics Applied to the Thiol Secretome.
    Ghezzi P, Chan P.
    Antioxid Redox Signal; 2017 Mar 01; 26(7):299-312. PubMed ID: 27139336
    [Abstract] [Full Text] [Related]

  • 25. Detection of redox-based modification in two-dimensional electrophoresis proteomic separations.
    Sheehan D.
    Biochem Biophys Res Commun; 2006 Oct 20; 349(2):455-62. PubMed ID: 16956583
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Gossypol induces apoptosis in ovarian cancer cells through oxidative stress.
    Wang J, Jin L, Li X, Deng H, Chen Y, Lian Q, Ge R, Deng H.
    Mol Biosyst; 2013 Jun 20; 9(6):1489-97. PubMed ID: 23532321
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Effects of oxidative stress on protein thiols and disulphides in Mytilus edulis revealed by proteomics: actin and protein disulphide isomerase are redox targets.
    McDonagh B, Sheehan D.
    Mar Environ Res; 2008 Jul 20; 66(1):193-5. PubMed ID: 18396326
    [Abstract] [Full Text] [Related]

  • 32. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control.
    Jones DP, Go YM, Anderson CL, Ziegler TR, Kinkade JM, Kirlin WG.
    FASEB J; 2004 Aug 20; 18(11):1246-8. PubMed ID: 15180957
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Extracellular thiols and thiol/disulfide redox in metabolism.
    Moriarty-Craige SE, Jones DP.
    Annu Rev Nutr; 2004 Aug 20; 24():481-509. PubMed ID: 15189129
    [Abstract] [Full Text] [Related]

  • 37. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.
    Lindahl M, Mata-Cabana A, Kieselbach T.
    Antioxid Redox Signal; 2011 Jun 15; 14(12):2581-642. PubMed ID: 21275844
    [Abstract] [Full Text] [Related]

  • 38. Multiple stressor-induced proteome responses of Escherichia coli BL21(DE3).
    Han KY, Park JS, Seo HS, Ahn KY, Lee J.
    J Proteome Res; 2008 May 15; 7(5):1891-903. PubMed ID: 18363324
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Thiol-disulfide exchange in signaling: disulfide bonds as a switch.
    Messens J, Collet JF.
    Antioxid Redox Signal; 2013 May 01; 18(13):1594-6. PubMed ID: 23330837
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.