These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
306 related items for PubMed ID: 20387049
41. Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Hicks LM, Cahoon RE, Bonner ER, Rivard RS, Sheffield J, Jez JM. Plant Cell; 2007 Aug; 19(8):2653-61. PubMed ID: 17766407 [Abstract] [Full Text] [Related]
47. Analysis of global and specific changes in the disulfide proteome using redox two-dimensional polyacrylamide gel electrophoresis. Cumming RC. Methods Mol Biol; 2008 May; 476():165-79. PubMed ID: 19157016 [Abstract] [Full Text] [Related]
50. Thiol-Redox Proteomics to Study Reversible Protein Thiol Oxidations in Bacteria. Rossius M, Hochgräfe F, Antelmann H. Methods Mol Biol; 2018 May; 1841():261-275. PubMed ID: 30259492 [Abstract] [Full Text] [Related]
53. Investigating redox regulation of protein tyrosine phosphatases using low pH thiol labeling and enrichment strategies coupled to MALDI-TOF mass spectrometry. Bonham CA, Steevensz AJ, Geng Q, Vacratsis PO. Methods; 2014 Jan 15; 65(2):190-200. PubMed ID: 23978514 [Abstract] [Full Text] [Related]
54. Kinetic and thermodynamic aspects of cellular thiol-disulfide redox regulation. Jensen KS, Hansen RE, Winther JR. Antioxid Redox Signal; 2009 May 15; 11(5):1047-58. PubMed ID: 19014315 [Abstract] [Full Text] [Related]
55. Thiol/disulfide redox states in signaling and sensing. Go YM, Jones DP. Crit Rev Biochem Mol Biol; 2013 May 15; 48(2):173-81. PubMed ID: 23356510 [Abstract] [Full Text] [Related]
56. Thiol redox proteomics seen with fluorescent eyes: the detection of cysteine oxidative modifications by fluorescence derivatization and 2-DE. Izquierdo-Álvarez A, Martínez-Ruiz A. J Proteomics; 2011 Dec 21; 75(2):329-38. PubMed ID: 21983555 [Abstract] [Full Text] [Related]
57. Direct determination of the redox status of cysteine residues in proteins in vivo. Hara S, Tatenaka Y, Ohuchi Y, Hisabori T. Biochem Biophys Res Commun; 2015 Jan 02; 456(1):339-43. PubMed ID: 25436431 [Abstract] [Full Text] [Related]
58. HIV-1 tat expression and sulphamethoxazole hydroxylamine mediated oxidative stress alter the disulfide proteome in Jurkat T cells. Adeyanju K, Bend JR, Rieder MJ, Dekaban GA. Virol J; 2018 May 09; 15(1):82. PubMed ID: 29743079 [Abstract] [Full Text] [Related]
59. Protein thiols undergo reversible and irreversible oxidation during chill storage of ground beef as detected by 4,4'-dithiodipyridine. Rysman T, Jongberg S, Van Royen G, Van Weyenberg S, De Smet S, Lund MN. J Agric Food Chem; 2014 Dec 10; 62(49):12008-14. PubMed ID: 25382278 [Abstract] [Full Text] [Related]
60. Thiol Redox Proteomics for Identifying Redox-Sensitive Cysteine Residues Within the Protein of Interest During Stress. Vogelsang L, Eirich J, Finkemeier I, Dietz KJ. Methods Mol Biol; 2024 Dec 10; 2832():99-113. PubMed ID: 38869790 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]