These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
183 related items for PubMed ID: 20392571
1. Low energy lamps and eye lens autofluorescence. Walsh G, Pearce EI. Med Hypotheses; 2010 Oct; 75(4):353-5. PubMed ID: 20392571 [Abstract] [Full Text] [Related]
2. Quantal and visual efficiency of fluorescence in the lens of the human eye. van den Berg TJ. Invest Ophthalmol Vis Sci; 1993 Dec; 34(13):3566-73. PubMed ID: 8258514 [Abstract] [Full Text] [Related]
5. The effect of white light and UV-A on the green autofluorescence of the rabbit lens in vivo. Van Vreeswijk H, Boets EP, Van Best JA. Exp Eye Res; 1993 Mar; 56(3):349-54. PubMed ID: 8472790 [Abstract] [Full Text] [Related]
6. In situ measurements of lens fluorescence and its interference with visual function. Zuclich JA, Glickman RD, Menendez AR. Invest Ophthalmol Vis Sci; 1992 Feb; 33(2):410-5. PubMed ID: 1740373 [Abstract] [Full Text] [Related]
7. Characterization and recovery of mercury from spent fluorescent lamps. Jang M, Hong SM, Park JK. Waste Manag; 2005 Feb; 25(1):5-14. PubMed ID: 15681174 [Abstract] [Full Text] [Related]
10. Transmission spectrums and retinal blue-light irradiance values of untinted and yellow-tinted intraocular lenses. Tanito M, Okuno T, Ishiba Y, Ohira A. J Cataract Refract Surg; 2010 Feb; 36(2):299-307. PubMed ID: 20152614 [Abstract] [Full Text] [Related]
11. Near-UV/blue light-induced fluorescence in the human lens: potential interference with visual function. Zuclich JA, Previc FH, Novar BJ, Edsall PR. J Biomed Opt; 2005 Feb; 10(4):44021. PubMed ID: 16178654 [Abstract] [Full Text] [Related]
12. Visual performance for trip hazard detection when using incandescent and led miner cap lamps. Sammarco JJ, Gallagher S, Reyes M. J Safety Res; 2010 Apr; 41(2):85-91. PubMed ID: 20497793 [Abstract] [Full Text] [Related]
13. Estimating human indoor exposure to elemental mercury from broken compact fluorescent lamps (CFLs). Salthammer T, Uhde E, Omelan A, Lüdecke A, Moriske HJ. Indoor Air; 2012 Aug; 22(4):289-98. PubMed ID: 22188528 [Abstract] [Full Text] [Related]
14. Fluorescence intensity profile of human lens sections. Jacobs R, Krohn DL. Invest Ophthalmol Vis Sci; 1981 Jan; 20(1):117-20. PubMed ID: 7451073 [Abstract] [Full Text] [Related]
15. Absorption spectra of dye solutions measured using a white light thermal lens spectrophotometer. Marcano O A, Ojeda J, Melikechi N. Appl Spectrosc; 2006 May; 60(5):560-3. PubMed ID: 16756708 [Abstract] [Full Text] [Related]
16. The autistic vision problem with light from fluorescent lamps explained in terms of coherence and phase shift. Gluskin E, Bisketzis N, Ben-Shimol Y, Topalis FV. Med Hypotheses; 2006 May; 66(1):207-8. PubMed ID: 16223569 [No Abstract] [Full Text] [Related]
17. Treating high-mercury-containing lamps using full-scale thermal desorption technology. Chang TC, You SJ, Yu BS, Chen CM, Chiu YC. J Hazard Mater; 2009 Mar 15; 162(2-3):967-72. PubMed ID: 18603361 [Abstract] [Full Text] [Related]
18. [Visual work capacity with different sources of illumination]. Novik AIa, Soldatova AM, Martirosova VG, Semenets LV. Vrach Delo; 1991 Aug 15; (8):97-9. PubMed ID: 1949751 [Abstract] [Full Text] [Related]
19. [Retinal function under conditions of artificial illumination with varying spectral makeup in patients with sclerotic macular dystrophy]. Soldatova AM. Oftalmol Zh; 1990 Aug 15; (7):403-8. PubMed ID: 2092256 [Abstract] [Full Text] [Related]
20. Arc lamps and monochromators for fluorescence microscopy. Uhl R. Cold Spring Harb Protoc; 2012 Sep 01; 2012(9):931-6. PubMed ID: 22949716 [Abstract] [Full Text] [Related] Page: [Next] [New Search]