These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


255 related items for PubMed ID: 2039616

  • 21. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet.
    Torburn L, Powers CM, Guiterrez R, Perry J.
    J Rehabil Res Dev; 1995 May; 32(2):111-9. PubMed ID: 7562650
    [Abstract] [Full Text] [Related]

  • 22. The effect of five prosthetic feet on the gait and loading of the sound limb in dysvascular below-knee amputees.
    Snyder RD, Powers CM, Fontaine C, Perry J.
    J Rehabil Res Dev; 1995 Nov; 32(4):309-15. PubMed ID: 8770795
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation.
    Segal AD, Zelik KE, Klute GK, Morgenroth DC, Hahn ME, Orendurff MS, Adamczyk PG, Collins SH, Kuo AD, Czerniecki JM.
    Hum Mov Sci; 2012 Aug; 31(4):918-31. PubMed ID: 22100728
    [Abstract] [Full Text] [Related]

  • 25. Gait analysis and energy consumption of below-knee amputees wearing three different prosthetic feet.
    Huang GF, Chou YL, Su FC.
    Gait Posture; 2000 Oct; 12(2):162-8. PubMed ID: 10998614
    [Abstract] [Full Text] [Related]

  • 26. A comparative study of oxygen consumption for conventional and energy-storing prosthetic feet in transfemoral amputees.
    Graham LE, Datta D, Heller B, Howitt J.
    Clin Rehabil; 2008 Oct; 22(10-11):896-901. PubMed ID: 18955421
    [Abstract] [Full Text] [Related]

  • 27. Variability of kinetic variables during gait in unilateral transtibial amputees.
    Svoboda Z, Janura M, Cabell L, Elfmark M.
    Prosthet Orthot Int; 2012 Jun; 36(2):225-30. PubMed ID: 22440580
    [Abstract] [Full Text] [Related]

  • 28. Mechanical work adaptations of above-knee amputee ambulation.
    Seroussi RE, Gitter A, Czerniecki JM, Weaver K.
    Arch Phys Med Rehabil; 1996 Nov; 77(11):1209-14. PubMed ID: 8931539
    [Abstract] [Full Text] [Related]

  • 29. Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation.
    Houdijk H, Wezenberg D, Hak L, Cutti AG.
    J Neuroeng Rehabil; 2018 Sep 05; 15(Suppl 1):76. PubMed ID: 30255807
    [Abstract] [Full Text] [Related]

  • 30. Stride kinematics and knee joint kinetics of child amputee gait.
    Hoy MG, Whiting WC, Zernicke RF.
    Arch Phys Med Rehabil; 1982 Feb 05; 63(2):74-82. PubMed ID: 7059274
    [Abstract] [Full Text] [Related]

  • 31. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms.
    Morgenroth DC, Roland M, Pruziner AL, Czerniecki JM.
    Clin Biomech (Bristol); 2018 Jun 05; 55():65-72. PubMed ID: 29698851
    [Abstract] [Full Text] [Related]

  • 32. Segment velocities in normal and transtibial amputees: prosthetic design implications.
    Rao SS, Boyd LA, Mulroy SJ, Bontrager EL, Gronley JK, Perry J.
    IEEE Trans Rehabil Eng; 1998 Jun 05; 6(2):219-26. PubMed ID: 9631330
    [Abstract] [Full Text] [Related]

  • 33. Optimization of prosthetic foot stiffness to reduce metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study.
    Fey NP, Klute GK, Neptune RR.
    J Biomech Eng; 2012 Nov 05; 134(11):111005. PubMed ID: 23387787
    [Abstract] [Full Text] [Related]

  • 34. Energy flow analysis of amputee walking shows a proximally-directed transfer of energy in intact limbs, compared to a distally-directed transfer in prosthetic limbs at push-off.
    Weinert-Aplin RA, Howard D, Twiste M, Jarvis HL, Bennett AN, Baker RJ.
    Med Eng Phys; 2017 Jan 05; 39():73-82. PubMed ID: 27836575
    [Abstract] [Full Text] [Related]

  • 35. Comprehensive analysis of dynamic elastic response feet: Seattle Ankle/Lite Foot versus SACH foot.
    Lehmann JF, Price R, Boswell-Bessette S, Dralle A, Questad K.
    Arch Phys Med Rehabil; 1993 Aug 05; 74(8):853-61. PubMed ID: 8347071
    [Abstract] [Full Text] [Related]

  • 36. Stance phase control of above-knee prostheses: knee control versus SACH foot design.
    Stein JL, Flowers WC.
    J Biomech; 1987 Aug 05; 20(1):19-28. PubMed ID: 3558425
    [Abstract] [Full Text] [Related]

  • 37. Changes to level ground transtibial amputee gait with a weighted backpack.
    Doyle SS, Lemaire ED, Besemann M, Dudek NL.
    Clin Biomech (Bristol); 2014 Feb 05; 29(2):149-54. PubMed ID: 24355702
    [Abstract] [Full Text] [Related]

  • 38. Functional joint center of prosthetic feet during level ground and incline walking.
    Lecomte C, Starker F, Guðnadóttir EÞ, Rafnsdóttir S, Guðmundsson K, Briem K, Brynjolfsson S.
    Med Eng Phys; 2020 Jul 05; 81():13-21. PubMed ID: 32527519
    [Abstract] [Full Text] [Related]

  • 39. Biomechanical evaluation of SACH and uniaxial feet.
    Goh JC, Solomonidis SE, Spence WD, Paul JP.
    Prosthet Orthot Int; 1984 Dec 05; 8(3):147-54. PubMed ID: 6522257
    [Abstract] [Full Text] [Related]

  • 40. Low-cost prosthetic feet for underserved populations: A comparison of gait analysis and mechanical stiffness.
    Banks BP, Frei JS, Spencer A, Renninger KD, Grover JK, Abbott K, Carlson BJ, Bruening DA.
    Prosthet Orthot Int; 2023 Aug 01; 47(4):399-406. PubMed ID: 36701193
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.