These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


2066 related items for PubMed ID: 20398935

  • 1. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites.
    Roohani-Esfahani SI, Nouri-Khorasani S, Lu Z, Appleyard R, Zreiqat H.
    Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935
    [Abstract] [Full Text] [Related]

  • 2. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI, Lu ZF, Li JJ, Ellis-Behnke R, Kaplan DL, Zreiqat H.
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [Abstract] [Full Text] [Related]

  • 3. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J, Lu X, Duan K, Guo LY, Zhou SB, Weng J.
    Colloids Surf B Biointerfaces; 2009 Nov 01; 74(1):159-66. PubMed ID: 19679453
    [Abstract] [Full Text] [Related]

  • 4. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid).
    Miao X, Tan DM, Li J, Xiao Y, Crawford R.
    Acta Biomater; 2008 May 01; 4(3):638-45. PubMed ID: 18054297
    [Abstract] [Full Text] [Related]

  • 5. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells.
    Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P.
    J Biomed Mater Res A; 2010 Jul 01; 94(1):241-51. PubMed ID: 20166220
    [Abstract] [Full Text] [Related]

  • 6. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.
    Arafat MT, Lam CX, Ekaputra AK, Wong SY, Li X, Gibson I.
    Acta Biomater; 2011 Feb 01; 7(2):809-20. PubMed ID: 20849985
    [Abstract] [Full Text] [Related]

  • 7. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro.
    Shor L, Güçeri S, Wen X, Gandhi M, Sun W.
    Biomaterials; 2007 Dec 01; 28(35):5291-7. PubMed ID: 17884162
    [Abstract] [Full Text] [Related]

  • 8. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S.
    Artif Organs; 2008 May 01; 32(5):388-97. PubMed ID: 18471168
    [Abstract] [Full Text] [Related]

  • 9. Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process.
    Heo SJ, Kim SE, Wei J, Hyun YT, Yun HS, Kim DH, Shin JW, Shin JW.
    J Biomed Mater Res A; 2009 Apr 01; 89(1):108-16. PubMed ID: 18431758
    [Abstract] [Full Text] [Related]

  • 10. Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery.
    Kim HW, Knowles JC, Kim HE.
    Biomaterials; 2004 Apr 01; 25(7-8):1279-87. PubMed ID: 14643602
    [Abstract] [Full Text] [Related]

  • 11. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT, Lee MY, Tsai WW, Wang HC, Lu WC.
    J Tissue Eng Regen Med; 2016 Oct 01; 10(10):E337-E353. PubMed ID: 23955935
    [Abstract] [Full Text] [Related]

  • 12. Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds.
    Roohani-Esfahani SI, Nouri-Khorasani S, Lu ZF, Appleyard RC, Zreiqat H.
    Acta Biomater; 2011 Mar 01; 7(3):1307-18. PubMed ID: 20971219
    [Abstract] [Full Text] [Related]

  • 13. Three-dimensional hierarchical composite scaffolds consisting of polycaprolactone, β-tricalcium phosphate, and collagen nanofibers: fabrication, physical properties, and in vitro cell activity for bone tissue regeneration.
    Yeo M, Lee H, Kim G.
    Biomacromolecules; 2011 Feb 14; 12(2):502-10. PubMed ID: 21189025
    [Abstract] [Full Text] [Related]

  • 14. The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds.
    Jack KS, Velayudhan S, Luckman P, Trau M, Grøndahl L, Cooper-White J.
    Acta Biomater; 2009 Sep 14; 5(7):2657-67. PubMed ID: 19375396
    [Abstract] [Full Text] [Related]

  • 15. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix<sup/>.
    Nyberg E, Rindone A, Dorafshar A, Grayson WL.
    Tissue Eng Part A; 2017 Jun 14; 23(11-12):503-514. PubMed ID: 28027692
    [Abstract] [Full Text] [Related]

  • 16. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering.
    Park SA, Lee SH, Kim WD.
    Bioprocess Biosyst Eng; 2011 May 14; 34(4):505-13. PubMed ID: 21170553
    [Abstract] [Full Text] [Related]

  • 17. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration.
    Chesnutt BM, Viano AM, Yuan Y, Yang Y, Guda T, Appleford MR, Ong JL, Haggard WO, Bumgardner JD.
    J Biomed Mater Res A; 2009 Feb 14; 88(2):491-502. PubMed ID: 18306307
    [Abstract] [Full Text] [Related]

  • 18. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells.
    Zandi M, Mirzadeh H, Mayer C, Urch H, Eslaminejad MB, Bagheri F, Mivehchi H.
    J Biomed Mater Res A; 2010 Mar 15; 92(4):1244-55. PubMed ID: 19322878
    [Abstract] [Full Text] [Related]

  • 19. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ, Sugimoto M, Koh JL, Ameer GA.
    Tissue Eng Part C Methods; 2012 Feb 15; 18(2):113-21. PubMed ID: 21933018
    [Abstract] [Full Text] [Related]

  • 20. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix.
    Nichols HL, Zhang N, Zhang J, Shi D, Bhaduri S, Wen X.
    J Biomed Mater Res A; 2007 Aug 15; 82(2):373-82. PubMed ID: 17295227
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 104.