These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. The residues Leu 93 and Asp 96 act independently in the bacteriorhodopsin photocycle: studies with the leu 93-->Ala, Asp 96-->Asn double mutant. Delaney JK, Subramaniam S. Biophys J; 1996 May; 70(5):2366-72. PubMed ID: 9172761 [Abstract] [Full Text] [Related]
24. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer. Russell TS, Coleman M, Rath P, Nilsson A, Rothschild KJ. Biochemistry; 1997 Jun 17; 36(24):7490-7. PubMed ID: 9200698 [Abstract] [Full Text] [Related]
25. Infrared spectroscopic demonstration of a conformational change in bacteriorhodopsin involved in proton pumping. Ormos P. Proc Natl Acad Sci U S A; 1991 Jan 15; 88(2):473-7. PubMed ID: 1846442 [Abstract] [Full Text] [Related]
26. Fourier transform infrared evidence for early deprotonation of Asp(85) at alkaline pH in the photocycle of bacteriorhodopsin mutants containing E194Q. Lazarova T, Sanz C, Querol E, Padrós E. Biophys J; 2000 Apr 15; 78(4):2022-30. PubMed ID: 10733980 [Abstract] [Full Text] [Related]
27. Asp 46 can substitute Asp 96 as the Schiff base proton donor in bacteriorhodopsin. Coleman M, Nilsson A, Russell TS, Rath P, Pandey R, Rothschild KJ. Biochemistry; 1995 Nov 28; 34(47):15599-606. PubMed ID: 7492563 [Abstract] [Full Text] [Related]
28. Vibrational spectroscopy of bacteriorhodopsin mutants: I. Tyrosine-185 protonates and deprotonates during the photocycle. Braiman MS, Mogi T, Stern LJ, Hackett NR, Chao BH, Khorana HG, Rothschild KJ. Proteins; 1988 Nov 28; 3(4):219-29. PubMed ID: 2843849 [Abstract] [Full Text] [Related]
29. Effects of amino acid substitutions in the F helix of bacteriorhodopsin. Low temperature ultraviolet/visible difference spectroscopy. Ahl PL, Stern LJ, Düring D, Mogi T, Khorana HG, Rothschild KJ. J Biol Chem; 1988 Sep 25; 263(27):13594-601. PubMed ID: 3047127 [Abstract] [Full Text] [Related]
30. Two groups control light-induced Schiff base deprotonation and the proton affinity of Asp85 in the Arg82 his mutant of bacteriorhodopsin. Imasheva ES, Balashov SP, Ebrey TG, Chen N, Crouch RK, Menick DR. Biophys J; 1999 Nov 25; 77(5):2750-63. PubMed ID: 10545374 [Abstract] [Full Text] [Related]
32. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M, Yoshitsugu M, Mizuide N, Ihara K, Kandori H. Biochemistry; 2007 Jun 26; 46(25):7525-35. PubMed ID: 17547422 [Abstract] [Full Text] [Related]
33. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy. Morgan JE, Vakkasoglu AS, Lugtenburg J, Gennis RB, Maeda A. Biochemistry; 2008 Nov 04; 47(44):11598-605. PubMed ID: 18837559 [Abstract] [Full Text] [Related]
34. Substitution of membrane-embedded aspartic acids in bacteriorhodopsin causes specific changes in different steps of the photochemical cycle. Stern LJ, Ahl PL, Marti T, Mogi T, Duñach M, Berkowitz S, Rothschild KJ, Khorana HG. Biochemistry; 1989 Dec 26; 28(26):10035-42. PubMed ID: 2575917 [Abstract] [Full Text] [Related]
35. Coordinating the structural rearrangements associated with unidirectional proton transfer in the bacteriorhodopsin photocycle induced by deprotonation of the proton-release group: a time-resolved difference FTIR spectroscopic study. Morgan JE, Vakkasoglu AS, Lanyi JK, Gennis RB, Maeda A. Biochemistry; 2010 Apr 20; 49(15):3273-81. PubMed ID: 20232848 [Abstract] [Full Text] [Related]
36. Local-access model for proton transfer in bacteriorhodopsin. Brown LS, Dioumaev AK, Needleman R, Lanyi JK. Biochemistry; 1998 Mar 17; 37(11):3982-93. PubMed ID: 9521720 [Abstract] [Full Text] [Related]
37. The retinal Schiff base-counterion complex of bacteriorhodopsin: changed geometry during the photocycle is a cause of proton transfer to aspartate 85. Brown LS, Gat Y, Sheves M, Yamazaki Y, Maeda A, Needleman R, Lanyi JK. Biochemistry; 1994 Oct 11; 33(40):12001-11. PubMed ID: 7918419 [Abstract] [Full Text] [Related]
38. Effects of individual genetic substitutions of arginine residues on the deprotonation and reprotonation kinetics of the Schiff base during the bacteriorhodopsin photocycle. Lin GC, el-Sayed MA, Marti T, Stern LJ, Mogi T, Khorana HG. Biophys J; 1991 Jul 11; 60(1):172-8. PubMed ID: 1883936 [Abstract] [Full Text] [Related]
39. Alteration of conformation and dynamics of bacteriorhodopsin induced by protonation of Asp 85 and deprotonation of Schiff base as studied by 13C NMR. Kawase Y, Tanio M, Kira A, Yamaguchi S, Tuzi S, Naito A, Kataoka M, Lanyi JK, Needleman R, Saitô H. Biochemistry; 2000 Nov 28; 39(47):14472-80. PubMed ID: 11087400 [Abstract] [Full Text] [Related]
40. FTIR difference spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: detection of a stable O-like species and characterization of its photocycle at low temperature. He Y, Krebs MP, Fischer WB, Khorana HG, Rothschild KJ. Biochemistry; 1993 Mar 09; 32(9):2282-90. PubMed ID: 8443171 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]