These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Impact of non-homologous end-joining deficiency on random and targeted DNA integration: implications for gene targeting. Iiizumi S, Kurosawa A, So S, Ishii Y, Chikaraishi Y, Ishii A, Koyama H, Adachi N. Nucleic Acids Res; 2008 Nov; 36(19):6333-42. PubMed ID: 18835848 [Abstract] [Full Text] [Related]
3. ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation. de Pater S, Neuteboom LW, Pinas JE, Hooykaas PJ, van der Zaal BJ. Plant Biotechnol J; 2009 Oct; 7(8):821-35. PubMed ID: 19754840 [Abstract] [Full Text] [Related]
4. Molecular characterization of true and ectopic gene targeting events at the acetolactate synthase gene in Arabidopsis. Endo M, Osakabe K, Ichikawa H, Toki S. Plant Cell Physiol; 2006 Mar; 47(3):372-9. PubMed ID: 16418231 [Abstract] [Full Text] [Related]
5. Development of a highly efficient gene targeting system for Fusarium graminearum using the disruption of a polyketide synthase gene as a visible marker. Maier FJ, Malz S, Lösch AP, Lacour T, Schäfer W. FEMS Yeast Res; 2005 Apr; 5(6-7):653-62. PubMed ID: 15780665 [Abstract] [Full Text] [Related]
7. Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Villalba F, Collemare J, Landraud P, Lambou K, Brozek V, Cirer B, Morin D, Bruel C, Beffa R, Lebrun MH. Fungal Genet Biol; 2008 Jan; 45(1):68-75. PubMed ID: 17716934 [Abstract] [Full Text] [Related]
8. Efficient gene targeting by homologous recombination in rice. Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S. Nat Biotechnol; 2002 Oct; 20(10):1030-4. PubMed ID: 12219079 [Abstract] [Full Text] [Related]
9. Towards targeted mutagenesis and gene replacement in plants. Tzfira T, White C. Trends Biotechnol; 2005 Dec; 23(12):567-9. PubMed ID: 16243407 [Abstract] [Full Text] [Related]
10. Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Snoek IS, van der Krogt ZA, Touw H, Kerkman R, Pronk JT, Bovenberg RA, van den Berg MA, Daran JM. Fungal Genet Biol; 2009 May; 46(5):418-26. PubMed ID: 19269344 [Abstract] [Full Text] [Related]
11. The size and ratio of homologous sequence to non-homologous sequence in gene disruption cassette influences the gene targeting efficiency in Beauveria bassiana. Ma JC, Zhou Q, Zhou YH, Liao XG, Zhang YJ, Jin D, Pei Y. Appl Microbiol Biotechnol; 2009 Apr; 82(5):891-8. PubMed ID: 19148636 [Abstract] [Full Text] [Related]
12. Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-homologous end-joining proteins. Park SY, Vaghchhipawala Z, Vasudevan B, Lee LY, Shen Y, Singer K, Waterworth WM, Zhang ZJ, West CE, Mysore KS, Gelvin SB. Plant J; 2015 Mar; 81(6):934-46. PubMed ID: 25641249 [Abstract] [Full Text] [Related]
13. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Reuss O, Vik A, Kolter R, Morschhäuser J. Gene; 2004 Oct 27; 341():119-27. PubMed ID: 15474295 [Abstract] [Full Text] [Related]
14. Nuclear gene targeting in Chlamydomonas as exemplified by disruption of the PHOT gene. Zorin B, Lu Y, Sizova I, Hegemann P. Gene; 2009 Mar 01; 432(1-2):91-6. PubMed ID: 19121376 [Abstract] [Full Text] [Related]
15. Ku70 or Ku80 deficiencies in the fungus Botrytis cinerea facilitate targeting of genes that are hard to knock out in a wild-type context. Choquer M, Robin G, Le Pêcheur P, Giraud C, Levis C, Viaud M. FEMS Microbiol Lett; 2008 Dec 01; 289(2):225-32. PubMed ID: 19054110 [Abstract] [Full Text] [Related]