These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
295 related items for PubMed ID: 20412607
41. The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch. Chung HJ, Hoover R, Liu Q. Int J Biol Macromol; 2009 Mar 01; 44(2):203-10. PubMed ID: 19136026 [Abstract] [Full Text] [Related]
42. On the molecular structure of the amylopectin fraction isolated from "high-amylose" ae maize starches. Peymanpour G, Marcone M, Ragaee S, Tetlow I, Lane CC, Seetharaman K, Bertoft E. Int J Biol Macromol; 2016 Oct 01; 91():768-77. PubMed ID: 27296443 [Abstract] [Full Text] [Related]
43. Structure and function of starch and resistant starch from corn with different doses of mutant amylose-extender and floury-1 alleles. Yao N, Paez AV, White PJ. J Agric Food Chem; 2009 Mar 11; 57(5):2040-8. PubMed ID: 19256560 [Abstract] [Full Text] [Related]
44. Molecular-structure evolution during in vitro fermentation of granular high-amylose wheat starch is different to in vitro digestion. Li H, Gilbert RG, Gidley MJ. Food Chem; 2021 Nov 15; 362():130188. PubMed ID: 34090046 [Abstract] [Full Text] [Related]
45. Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Kuakpetoon D, Wang YJ. Carbohydr Res; 2006 Aug 14; 341(11):1896-915. PubMed ID: 16690041 [Abstract] [Full Text] [Related]
46. Studies of the retrogradation process for various starch gels using Raman spectroscopy. Fechner PM, Wartewig S, Kleinebudde P, Neubert RH. Carbohydr Res; 2005 Nov 21; 340(16):2563-8. PubMed ID: 16168973 [Abstract] [Full Text] [Related]
47. Pressure-temperature phase diagrams of maize starches with different amylose contents. Buckow R, Jankowiak L, Knorr D, Versteeg C. J Agric Food Chem; 2009 Dec 23; 57(24):11510-6. PubMed ID: 19916500 [Abstract] [Full Text] [Related]
48. Nutritional and carbohydrate characteristics of wheat and chickpea based weaning foods. Suhasini AW, Malleshi NG. Int J Food Sci Nutr; 2003 May 23; 54(3):181-7. PubMed ID: 12775367 [Abstract] [Full Text] [Related]
49. Dietary amylose and amylopectin ratio and resistant starch content affects plasma glucose, lactic acid, hormone levels and protein synthesis in splanchnic tissues. Deng J, Wu X, Bin S, Li TJ, Huang R, Liu Z, Liu Y, Ruan Z, Deng Z, Hou Y, Yin YL. J Anim Physiol Anim Nutr (Berl); 2010 Apr 23; 94(2):220-6. PubMed ID: 19175452 [Abstract] [Full Text] [Related]
50. High red meat diets induce greater numbers of colonic DNA double-strand breaks than white meat in rats: attenuation by high-amylose maize starch. Toden S, Bird AR, Topping DL, Conlon MA. Carcinogenesis; 2007 Nov 23; 28(11):2355-62. PubMed ID: 17916911 [Abstract] [Full Text] [Related]
51. Dietary amylose and amylopectin ratio changes starch digestion and intestinal microbiota diversity in goslings. Yang Z, Xu C, Wang W, Xu X, Yang HM, Wang ZY, Rose SP, Pirgozliev V. Br Poult Sci; 2022 Oct 23; 63(5):691-700. PubMed ID: 35583929 [Abstract] [Full Text] [Related]
52. Processing of novel elevated amylose wheats: functional properties and starch digestibility of extruded products. Chanvrier H, Appelqvist IA, Bird AR, Gilbert E, Htoon A, Li Z, Lillford PJ, Lopez-Rubio A, Morell MK, Topping DL. J Agric Food Chem; 2007 Dec 12; 55(25):10248-57. PubMed ID: 18001033 [Abstract] [Full Text] [Related]
53. Insights into the relations between the molecular structures and digestion properties of retrograded starch after ultrasonic treatment. Ding Y, Luo F, Lin Q. Food Chem; 2019 Oct 01; 294():248-259. PubMed ID: 31126460 [Abstract] [Full Text] [Related]
54. In vitro carbohydrate digestibility of whole-chickpea and chickpea bread products. Hawkins A, Johnson SK. Int J Food Sci Nutr; 2005 May 01; 56(3):147-55. PubMed ID: 16009629 [Abstract] [Full Text] [Related]
55. Assessment of the influence of amylose-LPC complexation on the extent of wheat starch digestibility by size-exclusion chromatography. Ahmadi-Abhari S, Woortman AJ, Hamer RJ, Loos K. Food Chem; 2013 Dec 15; 141(4):4318-23. PubMed ID: 23993621 [Abstract] [Full Text] [Related]
56. Influencing factor of resistant starch formation and application in cereal products: A review. Tian S, Sun Y. Int J Biol Macromol; 2020 Apr 15; 149():424-431. PubMed ID: 32004604 [Abstract] [Full Text] [Related]
57. Improved methodology for analyzing relations between starch digestion kinetics and molecular structure. Yu W, Tao K, Gilbert RG. Food Chem; 2018 Oct 30; 264():284-292. PubMed ID: 29853378 [Abstract] [Full Text] [Related]
58. In vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria. Wang X, Conway PL, Brown IL, Evans AJ. Appl Environ Microbiol; 1999 Nov 30; 65(11):4848-54. PubMed ID: 10543795 [Abstract] [Full Text] [Related]
59. Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. Barros F, Awika JM, Rooney LW. J Agric Food Chem; 2012 Nov 21; 60(46):11609-17. PubMed ID: 23126482 [Abstract] [Full Text] [Related]
60. Inhibitory effects of Citrus flavonoids on starch digestion and antihyperglycemic effects in HepG2 cells. Shen W, Xu Y, Lu YH. J Agric Food Chem; 2012 Sep 26; 60(38):9609-19. PubMed ID: 22958058 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]